10
LTC1588/LTC1589/LTC1592
1588992fa
Figure 1a. LTC1592 24-Bit Load Sequence (Minimum Input Word)
LTC1589 SDI Data Word = 14-Bit Input Code + 2 Don’t Care Bits at LSB Positions
LTC1588 SDI Data Word = 12-Bit Input Code + 4 Don’t Care Bits at LSB Positions
OPERATIO
U
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
C2 C1 C0 X X X X D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0C3
CS/LD
SCK
SDI
CONTROL WORD DON’T CARE
(RESERVED)
DATA WORD Dn
24-BIT DATA STREAM (CANNOT BE DAISY-CHAINED)
1588992 F01a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 25 26 27 28 29 30 31 32
C2 C1 C0 X X X X D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0C3XXXXXXXX
CS/LD
SCK
SDI
CONTROL WORD DON’T CARE DATA WORD Dn
32-BIT DATA STREAM (CAN BE DAISY-CHAINED)
DON’T CARE
C2 C1 C0 X X X X D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0C3XXXXXXXX
SDO
CURRENT
32-BIT INPUT
WORD
1588992 F01b
PREVIOUS 32-BIT INPUT WORD
t
2
t
3
t
4
t
1
t
8
D15
17
SCK
SDI
SDO
PREVIOUS D14PREVIOUS D15
18
D14
Figure 1b. LTC1592 32-Bit Load Sequence (Required for Daisy-Chain Operation)
LTC1589 SDI/SDO Data Word = 14-Bit Input Code + 2 Don’t Care Bits at LSB Positions
LTC1588 SDI/SDO Data Word = 12-Bit Input Code + 4 Don’t Care Bits at LSB Positions
11
LTC1588/LTC1589/LTC1592
1588992fa
APPLICATIO S I FOR ATIO
WUUU
Op Amp Selection
Because of the extremely high accuracy of the 16-bit
LTC1592, careful thought should be given to op amp
selection in order to achieve the exceptional performance
of which the part is capable. Fortunately, the sensitivity of
INL and DNL to op amp offset has been greatly reduced
compared to previous generations of multiplying DACs.
Tables 2 and 3 contain equations for evaluating the effects
of op amp parameters on the LTC1592’s accuracy when
programmed in a unipolar or bipolar output range. These
are the changes the op amp can cause to the INL, DNL,
unipolar offset, unipolar gain error, bipolar zero and bipo-
lar gain error. Tables 2 and 3 can also be used to determine
the effects of op amp parameters on the LTC1589 and the
LTC1588. However, the results obtained from Tables 2
and 3 are in 16-bit LSBs. Divide these results by 4
(LTC1589) and 16 (LTC1588) to obtain the correct LSB
sizing.
Table 4 contains a partial list of LTC precision op amps
recommended for use with the LTC1592. The easy-to-use
design equations simplify the selection of op amps to meet
the system’s specified error budget. Select the amplifier
from Table 4 and insert the specified op amp parameters
in Table 3. Add up all the errors for each category to
determine the effect the op amp has on the accuracy of the
LTC1592. Arithmetic summation gives an (unlikely) worst-
case effect. A root-sum-square (RMS) summation pro-
duces a more realistic estimate.
Op amp offset will contribute mostly to output offset and
gain error and has minimal effect on INL and DNL. For the
LTC1592, a 250µV op amp offset will cause about 0.65LSB
INL degradation and 0.15LSB DNL degradation with a 10V
full-scale range (20V range in bipolar). For the LTC1592
programmed in a unipolar mode, the same 250µV op amp
offset will cause a 3.3LSB zero-scale error and a 3.3LSB
gain error with a 10V full-scale range.
CS/LD goes high, the mode changes and the DAC output
goes to a value corresponding to the data code.
Examples using the LTC1592:
1. Using a 24-bit loading sequence, load the unipolar
range of 0V to 10V with the DAC output at zero volt:
a) CS/LD
b) Clock SDI = 1001 XXXX 0000 0000 0000 0000
c) CS/LD ; then V
OUT
= 0V
2. Using a 24-bit loading sequence, load the bipolar range
of ±5V and the DAC output at zero volt:
a) CS/LD
b) Clock SDI = 1010 XXXX 1000 0000 0000 0000
c) CS/LD ; then V
OUT
= 0V on the ±5V range
3. Using a 32-bit load sequence, load the bipolar range of
±10V with the DAC output voltage at 5V initially. Then
change the DAC output to –5V:
a) CS/LD
b) Clock SDI = XXXX XXXX 1011 XXXX 1100 0000 0000
0000
c) CS/LD ; then V
OUT
= 5V on the ±10V range
Next, the bipolar range of ±10V is retained and the DAC
output voltage is changed to V
OUT
= –5V:
a) CS/LD
b) Clock SDI = XXXX XXXX 0010 XXXX 0100 0000 0000
0000
c) CS/LD ; then V
OUT
= –5V on the ±10V range
OPERATIO
U
12
LTC1588/LTC1589/LTC1592
1588992fa
While not directly addressed by the simple equations in
Tables 2 and 3, temperature effects can be handled just as
easily for unipolar and bipolar applications. First, consult
an op amp’s data sheet to find the worst-case V
OS
and I
B
over temperature. Then, plug these numbers in the V
OS
and I
B
equations from Table 3 and calculate the tempera-
ture induced effects.
For applications where fast settling time is important, Appli-
cation Note 74, entitled “
Component and Measurement
Advances Ensure 16-Bit DAC Settling Time
,” offers a thor-
ough discussion of 16-bit DAC settling time and op amp
selection.
Precision Voltage Reference Considerations
Much in the same way selecting an operational amplifier
for use with the LTC1592 is critical to the performance of
the system, selecting a precision voltage reference also
requires due diligence. The output voltage of the LTC1592
is directly affected by the voltage reference; thus, any
voltage reference error will appear as a DAC output voltage
error.
There are three primary error sources to consider when
selecting a precision voltage reference for 16-bit applica-
tions: output voltage initial tolerance, output voltage tem-
perature coefficient and output voltage noise.
Initial reference output voltage tolerance, if uncorrected,
generates a full-scale error term. Choosing a reference
APPLICATIO S I FOR ATIO
WUUU
Table 4. Partial List of LTC Precision Amplifiers Recommended for Use with the LTC1588/LTC1589/LTC1592,
with Relevant Specifications
AMPLIFIER SPECIFICATIONS
VOLTAGE CURRENT SLEW GAIN BANDWIDTH t
SETTLING
POWER
V
OS
I
B
A
OL
NOISE NOISE RATE PRODUCT with LTC1592 DISSIPATION
AMPLIFIER µV nA V/mV nV/Hz pA/Hz V/µs MHz µsmW
LT1001 25 2 800 10 0.12 0.25 0.8 120 46
LT1097 50 0.35 1000 14 0.008 0.2 0.7 120 11
LT1112 (Dual) 60 0.25 1500 14 0.008 0.16 0.75 115 10.5/Op Amp
LT1124 (Dual) 70 20 4000 2.7 0.3 4.5 12.5 19 69/Op Amp
LT1468 75 10 5000 5 0.6 22 90 2.5 117
LT1469 (Dual) 125 10 2000 5 0.6 22 90 2.5 123/Op Amp
()
5V
V
REF
()
5V
V
REF
()
16.5k
A
VOL1
OP AMP
V
OS1
(mV)
I
B1
(nA)
A
VOL1
(V/V)
V
OS2
(mV)
I
B2
(mV)
A
VOL2
(V/V)
V
OS1
• 2.4 •
I
B1
• 0.0003 •
A1 •
0
0
0
INL (LSB)
()
5V
V
REF
()
5V
V
REF
()
1.5k
A
VOL1
()
66k
A
VOL2
()
131k
A
VOL1
()
131k
A
VOL1
()
131k
A
VOL2
()
131k
A
VOL2
V
OS1
• 0.6 •
I
B1
• 0.00008 •
A2 •
0
0
0
DNL (LSB)
()
5V
V
REF
()
5V
V
REF
V
OS1
• 13.2 •
I
B1
• 0.13 •
0
0
0
0
UNIPOLAR
OFFSET (LSB)
()
5V
V
REF
()
5V
V
REF
()
5V
V
REF
V
OS1
• 13.2 •
I
B1
• 0.0018 •
A5 •
V
OS2
• 26.2 •
I
B2
• 0.1 •
BIPOLAR GAIN
ERROR (LSB)
()
5V
V
REF
()
5V
V
REF
()
()
()
5V
V
REF
()
5V
V
REF
A3 • V
OS1
• 19.8 •
I
B1
• 0.01 •
0
A4 • V
OS2
• 13.1 •
A4 • I
B2
• 0.05 •
A4 •
BIPOLAR ZERO
ERROR (LSB)
UNIPOLAR GAIN
ERROR (LSB)
()
5V
V
REF
()
5V
V
REF
()
5V
V
REF
()
5V
V
REF
()
5V
V
REF
V
OS1
• 13.2 •
I
B1
• 0.0018 •
A5 •
V
OS2
• 26.2 •
I
B2
• 0.1 •
Table 3. Easy-to-Use Equations Determine Op Amp Effects on DAC Accuracy in All Output Ranges
Table 2. Variables for Each Output Range That Adjust the
Equations in Table 3
OUTPUT RANGE A1 A2 A3 A4 A5
5V 1.1 2 1
10V 2.2 3 1.5
±5V 2 2 1.2 1 1.5
±10V 4 4 1.2 1 2.5
±2.5V 1 1 1.6 1 1
2.5V to 7.5V 1.9 3 1 0.5 1.5

LTC1589IG#PBF

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Digital to Analog Converters - DAC 14-B SoftSpan DACs w/ Progmable Out Rng
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union