IRFHE4250DTRPBF

FASTIRFET™
IRFHE4250DPbF
1
www.irf.com © 2013 International Rectifier
September 26, 2013
HEXFET
®
Power MOSFET
Base part number Package Type
Standard Pack Orderable Part Number
Form Quantity
IRFHE4250DPbF Dual PQFN 6mm x 6mm Tape and Reel 4000 IRFHE4250DTRPbF
Q1 Q2
V
DSS
25 25 V
R
DS(on)
max
(@V
GS
= 4.5V)
4.10 1.35
m
Qg
(typical)
13 35 nC
I
D
(@T
C
= 25°C)
60 60 A
Features
Benefits
Control and synchronous MOSFETs in one package
Increased power density
Low charge control MOSFET (13nC typical)
results in
Lower switching losses
Low R
DSON
synchronous MOSFET (<1.35m)
Lower conduction losses
RoHS compliant, halogen-free
Environmentally friendlier
MSL2, industrial qualification
Increased reliability
Intrinsic schottky diode with low forward voltage on Q2
Lower switching losses
Low thermal resistance path to the top
Increased power density
Low thermal resistance path to the PCB
Increased power density
Notes through are on page 12
Absolute Maximum Ratings

Parameter Q1 Max. Q2 Max. Units
V
GS
Gate-to-Source Voltage ± 16 V
I
D
@ T
C
= 25°C Continuous Drain Current, V
GS
@ 10V 86 303 A
I
D
@ T
C
= 70°C Continuous Drain Current, V
GS
@ 10V 69 243
I
D
@ T
C
= 25°C Continuous Drain Current
(Source Bonding Technology Limited)
60 60
I
DM
Pulsed Drain Current 180 525
P
D
@T
C
= 25°C Power Dissipation 156 156 W
P
D
@T
C
= 70°C Power Dissipation 100 100
Linear Derating Factor 1.3 1.3 W/°C
T
J
Operating Junction and °C
T
STG
Storage Temperature Range
-55 to + 150
Applications
Control and Synchronous MOSFETs for synchronous buck
converters
DUAL PQFN 6X6 mm
Thermal Resistance

Parameter Q1 Max. Q2 Max. Units
R
JC
(Bottom)
Junction-to-Case 3.7
R
JC
(Top)
Junction-to-Case 0.91
°C/W
R
JA
Junction-to-Ambient 24
R
JA
(<10s)
Junction-to-Ambient
17
0.91
2.1
24
17
IRFHE4250DPbF
2
www.irf.com © 2013 International Rectifier
September 26, 2013
Static @ T
J
= 25°C (unless otherwise specified)

Parameter Min. Typ. Max. Units Conditions
BV
DSS
Drain-to-Source Breakdown Voltage Q1 25 ––– ––– V V
GS
= 0V, I
D
= 250µA
Q2 25 ––– –––
V
GS
= 0V, I
D
= 1.0mA
BV
DSS
/T
J
Breakdown Voltage Temp. Coefficient Q1 ––– 23 ––– mV/°C Reference to 25°C, I
D
= 1.0mA
Q2 ––– 21 –––
Reference to 25°C, I
D
= 10mA
Q1 ––– 2.20 2.75 V
GS
= 10V, I
D
= 27A
R
DS(on)
Static Drain-to-Source On-Resistance
Q2 ––– 0.70 0.90
m
V
GS
= 10V, I
D
= 27A
Q1 ––– 3.20 4.10
V
GS
= 4.5V, I
D
= 27A
Q2 ––– 1.00 1.35
V
GS
= 4.5V, I
D
= 27A
V
GS(th)
Gate Threshold Voltage Q1 1.1 1.6 2.1 V Q1: V
DS
= V
GS
, I
D
= 35µA
Q2 1.1 1.6 2.1
Q2: V
DS
= V
GS
, I
D
= 100µA
V
GS(th)
/T
J
Gate Threshold Voltage Coefficient Q1 ––– -5.8 ––– mV/°C Q1: V
DS
= V
GS
, I
D
= 35µA
Q2 ––– -7.8 –––
Q2: V
DS
= V
GS
, I
D
= 1.0mA
I
DSS
Drain-to-Source Leakage Current Q1 ––– ––– 1.0 µA V
DS
= 20V, V
GS
= 0V
Q2 ––– ––– 500
V
DS
= 20V, V
GS
= 0V
I
GSS
Gate-to-Source Forward Leakage Q1/Q2 ––– ––– 100 nA V
GS
= 16V
Gate-to-Source Reverse Leakage Q1/Q2 ––– ––– -100
V
GS
= -16V
gfs Forward Transconductance Q1 73 ––– ––– S V
DS
= 10V, I
D
= 14A
Q2 121 ––– –––
V
DS
= 10V, I
D
= 23A
Q
g
Total Gate Charge Q1 ––– 13 20
Q2 ––– 35 53
Q
gs1
Pre-Vth Gate-to-Source Charge Q1 ––– 3.6 –––
Q1
Q2 ––– 8.6 –––
V
DS
= 13V
Q
gs2
Post-Vth Gate-to-Source Charge Q1 ––– 1.3 –––
V
GS
= 4.5V, I
D
= 13A
Q2 ––– 3.8 –––
nC
Q
gd
Gate-to-Drain Charge Q1 ––– 5.2 –––
Q2
Q2 ––– 13 –––
V
DS
= 13V
Q
godr
Gate Charge Overdrive Q1 ––– 2.9 –––
V
GS
= 4.5V, I
D
= 23A
Q2 ––– 9.6 –––
Q
sw
Switch Charge (Q
gs2
+ Q
gd
) Q1 ––– 6.5 –––
Q2 ––– 16.8 –––
Q
oss
Output Charge Q1 ––– 14 ––– nC V
DS
= 16V, V
GS
= 0V
Q2 ––– 41 –––
R
G
Gate Resistance Q1 ––– 0.5 –––

Q2 ––– 0.4 –––
t
d(on)
Turn-On Delay Time Q1 ––– 11 ––– Q1
Q2 ––– 17 –––
V
DS
= 13V V
GS
= 4.5V
t
r
Rise Time Q1 ––– 33 –––
I
D
= 14A, Rg = 1.8
Q2 ––– 54 –––
ns
t
d(off)
Turn-Off Delay Time Q1 ––– 14 –––
Q2
Q2 ––– 24 –––
V
DS
= 13V V
GS
= 4.5V
t
f
Fall Time Q1 ––– 12 –––
I
D
= 23A, Rg = 1.8
Q2 ––– 16 –––
C
iss
Input Capacitance Q1 ––– 1735 –––
Q2 ––– 4765 –––
V
GS
= 0V
C
oss
Output Capacitance Q1 ––– 493 –––
pF V
DS
= 13V
Q2 ––– 1577 –––
ƒ = 1.0MHz
C
rss
Reverse Transfer Capacitance Q1 ––– 137 –––
Q2 ––– 370 –––
IRFHE4250DPbF
3
www.irf.com © 2013 International Rectifier
September 26, 2013
Avalanche Characteristics

Parameter Q1 Max. Q2 Max. Units
E
AS
Single Pulse Avalanche Energy 71 481 mJ
I
AR
Avalanche Current 32 63 A
Typ.
–––
–––
Diode Characteristics
 
Parameter Min. Typ. Max. Units Conditions
I
S
Continuous Source Current
Q1 ––– ––– 60
A MOSFET symbol
(Body Diode)
Q2 ––– ––– 60
showing the
I
SM
Pulsed Source Current
Q1 ––– ––– 180
A
integral reverse
(Body Diode)
Q2 ––– ––– 525
p-n junction diode.
V
SD
Diode Forward Voltage
Q1 ––– 0.77 0.88
V
T
J
= 25°C, I
S
= 14A, V
GS
= 0V
Q2 ––– 0.60 0.75
T
J
= 25°C, I
S
= 27A, V
GS
= 0V
t
rr
Reverse Recovery Time
Q1 ––– 19 29
ns Q1 T
J
= 25°C, I
F
= 30A
Q2 ––– 34 51
V
DD
= 13V, di/dt = 200A/µs
Q
rr
Reverse Recovery Charge
Q1 ––– 16 24
nC
Q2 T
J
= 25°C, I
F
= 30A
Q2 ––– 54 81
V
DD
= 13V, di/dt = 200A/µs

IRFHE4250DTRPBF

Mfr. #:
Manufacturer:
Infineon Technologies
Description:
Trans MOSFET N-CH 25V 86A/303A 30-Pin QFN EP T/R
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet