NCV7356
www.onsemi.com
16
Figure 12. Application Circuitry, 14 Pin Package
NCV7356
V
BAT
*
Voltage Regulator
V
BAT
+5 V
CAN Controller
2.7 kW
10
5
RxD
3
MODE0
4
MODE1
2
TxD
12
11
LOAD
CANH
6.49 kW
V
BAT_ECU
100 pF
V
BAT
1, 7, 8, 14
GND
100 pF
47 mH
ESD Protection −
NUP1105L
ECU Connector to
Single Wire CAN Bus
*Recommended capacitance at V
BAT_ECU
> 1.0 mF (immunity to ISO7637/1 test pulses)
MRA4004T3
9
INH
1 k
+
+
100 nF
NCV7356
www.onsemi.com
17
SOIC−8 Thermal Information
Parameter
Test Condition, Typical Value
Unit
Min Pad Board
(Note 23)
1, Pad Board
(Note 24)
Junction−to−Lead (psi−JL7, Y
JL8
) or Pins 6−7 57 51 °C/W
Junction−to−Ambient (R
q
JA
, q
JA
) 187 128 °C/W
23.1 oz copper, 53 mm
2
coper area, 0.062 thick FR4.
24.1 oz copper, 716 mm
2
coper area, 0.062 thick FR4.
Package Construction
with and without Mold Compound
Figure 13. Internal construction of the
package simulation.
Figure 14. Min pad is shown as the red traces.
1, pad includes the yellow area. Internal
construction is shown for later reference.
Various copper areas used
for heat spreading
Active Area (red)
Lead #1
0 100 200 300 400 500 600 800
2.0 oz. Cu
Figure 15. SOIC−8, q
JA
as a Function of the Pad Copper
Area Including Traces,
Board Material
q
JA
(°C/W)
160
Copper Area (mm
2
)
1.0 oz. Cu
700
150
140
130
120
110
100
190
180
170
NCV7356
www.onsemi.com
18
Table 1. SOIC−8 Thermal RC Network Models*
53 mm
2
719 mm
2
Copper Area 53 mm2 719 mm
2
Copper Area
Cauer Network Foster Network
C’s C’s Units Tau Tau Units
5.86E−06 5.86E−06 W−s/C 1.00E−06 1.00E−06 sec
2.29E−05 2.29E−05 W−s/C 1.00E−05 1.00E−05 sec
6.98E−05 6.97E−05 W−s/C 1.00E−04 1.00E−04 sec
3.68E−04 3.68E−04 W−s/C 1.99E−04 1.99E−04 sec
3.75E−04 3.74E−04 W−s/C 1.00E−03 1.00E−03 sec
1.57E−03 1.56E−03 W−s/C 1.64E−02 1.64E−02 sec
2.05E−02 2.24E−02 W−s/C 5.60E−01 5.60E−01 sec
9.13E−02 7.35E−02 W−s/C 4.50E+00 4.50E+00 sec
2.64E−01 1.22E+00 W−s/C 7.61E+01 7.61E+01 sec
1.66E+01 9.74E+00 W−s/C 3.00E+01 3.00E+01 sec
R’s R’s R’s R’s
0.22 0.22 C/W 1.30E−01 1.30E−01 C/W
0.50 0.50 C/W 2.82E−01 2.82E−01 C/W
1.30 1.30 C/W 8.91E−01 8.91E−01 C/W
1.80 1.79 C/W 0.17 0.18 C/W
0.95 0.96 C/W 1.88 1.88 C/W
7.43 7.37 C/W 7.15 7.24 C/W
31.19 31.59 C/W 19.80 16.27 C/W
59.97 47.70 C/W 30.1 54.7 C/W
75.79 28.63 C/W 14.1 23.3 C/W
4.41 6.15 C/W 109.0 21.3 C/W
*Bold face items in the Cauer network above, represent the package without the external thermal system. The Bold face items in the Foster network
are computed by the square root of time constant R(t) = 130 * sqrt(time(sec)). The constant is derived based on the active area of the device
with silicon and epoxy at the interface of the heat generation.
The Cauer networks generally have physical
significance and may be divided between nodes to separate
thermal behavior due to one portion of the network from
another. The Foster networks, though when sorted by time
constant (as above) bear a rough correlation with the Cauer
networks, are really only convenient mathematical models.
Both Foster and Cauer networks can be easily implemented
using circuit simulating tools, whereas Foster networks
may be more easily implemented using mathematical tools
(for instance, in a spreadsheet program), according to the
following formula:
R(t) +
n
S
i + 1
R
i
ǒ
1−e
−tńtau
i
Ǔ

NCV7356D1R2G

Mfr. #:
Manufacturer:
ON Semiconductor
Description:
CAN Interface IC Single Wire CAN Transceiver
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union