7
FN9072.9
December 10, 2015
Functional Pin Description
UGATE (Pin 1), (Pin 16 QFN)
Upper gate drive output. Connect to gate of high-side power
N-Channel MOSFET.
BOOT (Pin 2), (Pin 2 QFN)
Floating bootstrap supply pin for the upper gate drive.
Connect a bootstrap capacitor between this pin and the
PHASE pin. The bootstrap capacitor provides the charge to
turn on the upper MOSFET. A resistor in series with boot
capacitor is required in certain applications to reduce ringing
on the BOOT pin. See “Internal Bootstrap Device” on page 8
for guidance in choosing the appropriate capacitor and
resistor values.
PWM (Pin 3), (Pin 3 QFN)
The PWM signal is the control input for the driver. The PWM
signal can enter three distinct states during operation, see the
“Three-State PWM Input” on page 8 for further details. Connect
this pin to the PWM output of the controller.
GND (Pin 4), (Pin 4 QFN)
Bias and reference ground. All signals are referenced to
this node.
PGND (Pin 5 QFN Package Only)
This pin is the power ground return for the lower gate driver.
LGATE (Pin 5), (Pin 7 QFN)
Lower gate drive output. Connect to gate of the low-side
power N-Channel MOSFET.
VCC (Pin 6), (Pin 9 QFN)
Connect this pin to a +12V bias supply. Place a high quality
bypass capacitor from this pin to GND.
LVCC (Pin 10 QFN Package Only)
Lower gate driver supply voltage.
PVCC (Pin 7), (Pin 11 QFN)
For the HIP6601B and the HIP6604B, this pin supplies the
upper gate drive bias. Connect this pin from +12V down to +5V.
For the HIP6603B, this pin supplies both the upper and
lower gate drive bias. Connect this pin to either +12V or +5V.
PHASE (Pin 8), (Pin 14 QFN)
Connect this pin to the source of the upper MOSFET and the
drain of the lower MOSFET. The PHASE voltage is
monitored for adaptive shoot-through protection. This pin
also provides a return path for the upper gate drive.
Description
Operation
Designed for versatility and speed, the HIP6601B, HIP6603B
and HIP6604B dual MOSFET drivers control both high-side
and low-side N-Channel FETs from one externally provided
PWM signal.
The upper and lower gates are held low until the driver is
initialized. Once the VCC voltage surpasses the VCC Rising
Threshold (See “Electrical Specifications” on page 5), the
PWM signal takes control of gate transitions. A rising edge
on PWM initiates the turn-off of the lower MOSFET (see
“Timing Diagram” on page 7). After a short propagation
delay [t
PDLLGATE
], the lower gate begins to fall. Typical fall
times [t
FLGATE
] are provided in the “Electrical Specifications”
on page 5. Adaptive shoot-through circuitry monitors the
LGATE voltage and determines the upper gate delay time
[t
PDHUGATE
] based on how quickly the LGATE voltage
drops below 2.2V. This prevents both the lower and upper
MOSFETs from conducting simultaneously or shoot-through.
Once this delay period is complete the upper gate drive
begins to rise [t
RUGATE
] and the upper MOSFET turns on.
Timing Diagram
PWM
UGATE
LGATE
t
PDLLGATE
t
FLGATE
t
PDHUGATE
t
RUGATE
t
PDLUGATE
t
FUGATE
t
PDHLGATE
t
RLGATE
HIP6601B, HIP6603B, HIP6604B
8
FN9072.9
December 10, 2015
A falling transition on PWM indicates the turn-off of the upper
MOSFET and the turn-on of the lower MOSFET. A short
propagation delay [t
PDLUGATE
] is encountered before the
upper gate begins to fall [t
FUGATE
]. Again, the adaptive shoot-
through circuitry determines the lower gate delay time,
t
PDHLGATE
. The PHASE voltage is monitored and the lower
gate is allowed to rise after PHASE drops below 0.5V. The
lower gate then rises [t
RLGATE
], turning on the lower
MOSFET.
Three-State PWM Input
A unique feature of the HIP660X drivers is the addition of a
shutdown window to the PWM input. If the PWM signal
enters and remains within the shutdown window for a set
holdoff time, the output drivers are disabled and both
MOSFET gates are pulled and held low. The shutdown state
is removed when the PWM signal moves outside the
shutdown window. Otherwise, the PWM rising and falling
thresholds outlined in the Electrical Specifications determine
when the lower and upper gates are enabled.
Adaptive Shoot-Through Protection
Both drivers incorporate adaptive shoot-through protection
to prevent upper and lower MOSFETs from conducting
simultaneously and shorting the input supply. This is
accomplished by ensuring the falling gate has turned off one
MOSFET before the other is allowed to rise.
During turn-off of the lower MOSFET, the LGATE voltage is
monitored until it reaches a 2.2V threshold, at which time the
UGATE is released to rise. Adaptive shoot-through circuitry
monitors the PHASE voltage during UGATE turn-off. Once
PHASE has dropped below a threshold of 0.5V, the LGATE
is allowed to rise. PHASE continues to be monitored during
the lower gate rise time. If PHASE has not dropped below
0.5V within 250ns, LGATE is taken high to keep the
bootstrap capacitor charged. If the PHASE voltage exceeds
the 0.5V threshold during this period and remains high for
longer than 2s, the LGATE transitions low. Both upper and
lower gates are then held low until the next rising edge of the
PWM signal.
Power-On Reset (POR) Function
During initial start-up, the VCC voltage rise is monitored and
gate drives are held low until a typical VCC rising threshold
of 9.95V is reached. Once the rising VCC threshold is
exceeded, the PWM input signal takes control of the gate
drives. If VCC drops below a typical VCC falling threshold of
7.6V during operation, then both gate drives are again held
low. This condition persists until the VCC voltage exceeds
the VCC rising threshold.
Internal Bootstrap Device
The HIP6601B, HIP6603B, and HIP6604B drivers all feature
an internal bootstrap device. Simply adding an external
capacitor across the BOOT and PHASE pins completes the
bootstrap circuit.
The bootstrap capacitor must have a maximum voltage
rating above VCC + 5V. The bootstrap capacitor can be
chosen from the following equation:
Where Q
GATE
is the amount of gate charge required to fully
charge the gate of the upper MOSFET. The V
BOOT
term is
defined as the allowable droop in the rail of the upper drive.
As an example, suppose a HUF76139 is chosen as the
upper MOSFET. The gate charge, Q
GATE
, from the data
sheet is 65nC for a 10V upper gate drive. We will assume a
200mV droop in drive voltage over the PWM cycle. We find
that a bootstrap capacitance of at least 0.325F is required.
The next larger standard value capacitance is 0.33F.
In applications which require down conversion from +12V or
higher and PVCC is connected to a +12V source, a boot
resistor in series with the boot capacitor is required. The
increased power density of these designs tend to lead to
increased ringing on the BOOT and PHASE nodes, due to
faster switching of larger currents across given circuit
parasitic elements. The addition of the boot resistor allows
for tuning of the circuit until the peak ringing on BOOT is
below 29V from BOOT to GND and 17V from BOOT to VCC.
A boot resistor value of 5 typically meets this criteria.
In some applications, a well tuned boot resistor reduces the
ringing on the BOOT pin, but the PHASE to GND peak
ringing exceeds 17V. A gate resistor placed in the UGATE
trace between the controller and upper MOSFET gate is
recommended to reduce the ringing on the PHASE node by
slowing down the upper MOSFET turn-on. A gate resistor
value between 2 to 10 typically reduces the PHASE to
GND peak ringing below 17V.
Gate Drive Voltage Versatility
The HIP6601B and HIP6603B provide the user total
flexibility in choosing the gate drive voltage. The HIP6601B
lower gate drive is fixed to VCC [+12V], but the upper drive
rail can range from 12V down to 5V depending on what
voltage is applied to PVCC. The HIP6603B ties the upper
and lower drive rails together. Simply applying a voltage from
5V up to 12V on PVCC will set both driver rail voltages.
Power Dissipation
Package power dissipation is mainly a function of the
switching frequency and total gate charge of the selected
MOSFETs. Calculating the power dissipation in the driver for
a desired application is critical to ensuring safe operation.
Exceeding the maximum allowable power dissipation level
will push the IC beyond the maximum recommended
operating junction temperature of +125°C. The maximum
allowable IC power dissipation for the SO8 package is
approximately 800mW. When designing the driver into an
application, it is recommended that the following calculation
C
BOOT
Q
GATE
V
BOOT
------------------------
(EQ. 1)
HIP6601B, HIP6603B, HIP6604B
9
FN9072.9
December 10, 2015
be performed to ensure safe operation at the desired
frequency for the selected MOSFETs. The power dissipated
by the driver is approximated as:
where f
sw
is the switching frequency of the PWM signal. V
U
and V
L
represent the upper and lower gate rail voltage. Q
U
and Q
L
is the upper and lower gate charge determined by
MOSFET selection and any external capacitance added to
the gate pins. The I
DDQ
V
CC
product is the quiescent power
of the driver and is typically 30mW.
The power dissipation approximation is a result of power
transferred to and from the upper and lower gates. But, the
internal bootstrap device also dissipates power on-chip
during the refresh cycle. Expressing this power in terms of
the upper MOSFET total gate charge is explained below.
The bootstrap device conducts when the lower MOSFET or
its body diode conducts and pulls the PHASE node toward
GND. While the bootstrap device conducts, a current path is
formed that refreshes the bootstrap capacitor. Since the
upper gate is driving a MOSFET, the charge removed from
the bootstrap capacitor is equivalent to the total gate charge
of the MOSFET. Therefore, the refresh power required by
the bootstrap capacitor is equivalent to the power used to
charge the gate capacitance of the MOSFET.
where Q
LOSS
is the total charge removed from the bootstrap
capacitor and provided to the upper gate load.
The 1.05 factor is a correction factor derived from the
following characterization. The base circuit for characterizing
the drivers for different loading profiles and frequencies is
provided. C
U
and C
L
are the upper and lower gate load
capacitors. Decoupling capacitors [0.15F] are added to the
PVCC and VCC pins. The bootstrap capacitor value is 0.01F.
In Figure 1, C
U
and C
L
values are the same and frequency
is varied from 50kHz to 2MHz. PVCC and VCC are tied
together to a +12V supply. Curves do exceed the 800mW
cutoff, but continuous operation above this point is not
recommended.
Figure 2 shows the dissipation in the driver with 3nF loading
on both gates and each individually. Note the higher upper
gate power dissipation which is due to the bootstrap device
refresh cycle. Again PVCC and VCC are tied together and to
a +12V supply.
Test Circuit
The impact of loading on power dissipation is shown in
Figure 3. Frequency is held constant while the gate capacitors
are varied from 1nF to 5nF. VCC and PVCC are tied together
and to a +12V supply. Figures 4, 5 and 6 show the same
characterization for the HIP6603B with a +5V supply on PVCC
and VCC tied to a +12V supply.
Since both upper and lower gate capacitance can vary,
Figure 8 shows dissipation curves versus lower gate
capacitance with upper gate capacitance held constant at three
different values. These curves apply only to the HIP6601B due
to power supply configuration.
P1.05f
sw
3
2
---
V
U
Q
U
V
L
Q
L
+


I
DDQ
VCC+=
(EQ. 2)
P
REFRESH
1
2
---
f
SW
Q
LOSS
V
PVCC
1
2
---
f
SW
Q
U
V
U
==
(EQ. 3)
BOOT
UGATE
PHASE
LGATE
PWM
PVCC
GND
VCC
0.15F
0.15F
100k
2N7002
2N7002
0.01F
C
L
C
U
+5V OR +12V
+12V
HIP660X
+5V OR +12V
FIGURE 1. POWER DISSIPATION vs FREQUENCY
1000
800
600
400
200
0 500 1000 1500 2000
POWER (mW)
FREQUENCY (kHz)
C
U
= C
L
= 3nF
VCC = PVCC = 12V
C
U
= C
L
= 1nF
C
U
= C
L
= 2nF
C
U
= C
L
= 4nF
C
U
= C
L
= 5nF
FIGURE 2. 3nF LOADING PROFILE
1000
800
600
400
200
0 500 1000 1500 2000
POWER (mW)
FREQUENCY (kHz)
C
U
= C
L
= 3nF
VCC = PVCC = 12V
C
U
= 3nF
C
U
= 0nF
C
L
= 0nF
C
L
= 3nF
HIP6601B, HIP6603B, HIP6604B

HIP6601BCBZA-T

Mfr. #:
Manufacturer:
Renesas / Intersil
Description:
Gate Drivers W/ANNEAL SYNCH-RECT BUCK FET DRVR
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union