7
LT1776
TIMING DIAGRAMS
WUW
Low dV/dt ModeHigh dV/dt Mode
SWOFF
1776 TD02
BOOST
SWON
SWDR
0
V
IN
V
SW
SWOFF
1776 TD01
BOOST
SWON
SWDR
0
V
IN
V
SW
The LT1776 is a current mode switching regulator IC that
has been optimized for high efficiency operation in high
input voltage, low output voltage buck topologies. The
Block Diagram shows an overall view of the system.
Several of the blocks are straightforward and similar to
those found in traditional designs, including: Internal Bias
Regulator, Oscillator and Feedback Amplifier. The novel
portion includes an elaborate Output Switch section and
Logic Section to provide the control signals required by
the switch section.
The LT1776 operates much the same as traditional
current mode switchers, the major difference being its
specialized output switch section. Due to space con-
straints, this discussion will not reiterate the basics of
current mode switcher/controllers and the “buck” topol-
ogy. A good source of information on these topics is
Application Note 19.
Output Switch Theory
One of the classic problems in delivering low output
voltage from high input voltage at good efficiency is that
minimizing AC switching losses requires very fast volt-
age (dV/dt) and current (dI/dt) transition at the output
device. This is in spite of the fact that in a bipolar
implementation, slow lateral PNPs must be included in
the switching signal path.
OPERATIO
U
Fast positive-going slew rate action is provided by lateral
PNP Q3 driving the Darlington arrangement of Q1 and Q2.
The extra β available from Q2 greatly reduces the drive
requirements of Q3.
Although desirable for dynamic reasons, this topology
alone will yield a large DC forward voltage drop. A second
lateral PNP, Q4, acts directly on the base of Q1 to reduce
the voltage drop after the slewing phase has taken place.
To achieve the desired high slew rate, PNPs Q3 and Q4 are
“force-fed” packets of charge via the current sources
controlled by the boost signal.
Please refer to the High dV/dt Mode Timing Diagram. A
typical oscillator cycle is as follows: The logic section first
generates an SWDR signal that powers up the current
comparator and allows it time to settle. About 1µs later, the
SWON signal is asserted and the BOOST signal is pulsed
for a few hundred nanoseconds. After a short delay, the
V
SW
pin slews rapidly to V
IN
. Later, after the peak switch
current indicated by the control voltage V
C
has been
reached (current mode control), the SWON and SWDR
signals are turned off, and SWOFF is pulsed for several
hundred nanoseconds. The use of an explicit turn-off
device, i.e., Q5, improves turn-off response time and thus
aids both controllability and efficiency.
8
LT1776
OPERATIO
U
The system as previously described handles heavy loads
(continuous mode) at good efficiency, but it is actually
counterproductive for light loads. The method of jam-
ming charge into the PNP bases makes it difficult to turn
them off rapidly and achieve the very short switch ON
times required by light loads in discontinuous mode.
Further
more, the high leading edge dV/dt rate similarly
adversely affects light load controllability.
The solution is to employ a “boost comparator” whose
inputs are the V
C
control voltage and a fixed internal
threshold reference, V
TH
. (Remember that in a current
mode switching topology, the V
C
voltage determines the
peak switch current.) When the V
C
signal is above V
TH
, the
previously described “high dV/dt” action is performed.
When the V
C
signal is below V
TH
, the boost pulses are
absent, as can be seen in the Low dV/dt Mode Timing
Diagram. Now the DC current, activated by the SWON
signal alone, drives Q4 and this transistor drives Q1 by
itself. The absence of a boost pulse, plus the lack of a
second NPN driver, result in a much lower slew rate which
aids light load controllability.
A further aid to overall efficiency is provided by the
specialized bias regulator circuit, which has a pair of
inputs, V
IN
and V
CC
. The V
CC
pin is normally connected to
the switching supply output. During start-up conditions,
the LT1776 powers itself directly from V
IN
. However, after
the switching supply output voltage reaches about 2.9V,
the bias regulator uses this supply as its input. Previous
generation buck controller ICs without this provision
typically required hundreds of milliwatts of quiescent
power when operating at high input voltage. This both
degraded efficiency and limited available output current
due to internal heating.
APPLICATIONS INFORMATION
WUU
U
Selecting a Power Inductor
There are several parameters to consider when selecting
a power inductor. These include inductance value, peak
current rating (to avoid core saturation), DC resistance,
construction type, physical size, and of course, cost.
In a typical application, proper inductance value is dictated
by matching the discontinuous/continuous crossover point
with the LT1776 internal low-to-high dV/dt threshold. This
is the best compromise between maintaining control with
light loads while maintaining good efficiency with heavy
loads. The fixed internal dV/dt threshold has a nominal
value of 1.4V, which referred to the V
C
pin threshold and
control voltage to switch transconductance, corresponds
to a peak current of about 200mA. Standard buck con-
verter theory yields the following expression for induc-
tance at the discontinuous/continuous crossover:
L
V
fI
VV
V
OUT
PK
IN OUT
IN
=
For example, substituting 40V, 5V, 200mA and 200kHz
respectively for V
IN
, V
OUT
, I
PK
and f yields a value of about
100µH. Note that the left half of this expression is indepen-
dent of input voltage while the right half is only a weak
function of V
IN
when V
IN
is much greater than V
OUT
. This
means that a single inductor value will work well over a
range of “high” input voltage. And although a progres-
sively smaller inductor is suggested as V
IN
begins to
approach V
OUT
, note that the much higher ON duty cycles
under these conditions are much more forgiving with
respect to controllability and efficiency issues. Therefore
when a wide input voltage range must be accommodated,
say 10V to 40V for 5V
OUT
, the user should choose an
inductance value based on the maximum input voltage.
Once the inductance value is decided, inductor peak
current rating and resistance need to be considered. Here,
the inductor peak current rating refers to the onset of
saturation in the core material, although manufacturers
sometimes specify a “peak current rating” which is de-
rived from a worst-case combination of core saturation
and self-heating effects. Inductor winding resistance alone
9
LT1776
APPLICATIONS INFORMATION
WUU
U
limits the inductor’s current carrying capability as the I
2
R
power threatens to overheat the inductor. If applicable,
remember to include the condition of output short circuit.
Although the peak current rating of the inductor can be
exceeded in short-circuit operation, as core saturation per
se is not destructive to the core, excess resistive self-
heating is still a potential problem.
The final inductor selection is generally based on cost,
which usually translates into choosing the smallest physi-
cal size part that meets the desired inductance value,
resistance and current carrying capability. An additional
factor to consider is that of physical construction. Briefly
stated, “open” inductors built on a rod- or barrel-shaped
core generally offer the smallest physical size and lowest
cost. However their open construction does not contain
the resulting magnetic field, and they may not be accept-
able in RFI-sensitive applications. Toroidal style induc-
tors, many available in surface mount configuration, offer
improved RFI performance, generally at an increase in
cost and physical size. And although custom design is
always a possibility, most potential LT1776 applications
can be handled by the array of standard, off-the-shelf
inductor products offered by the major suppliers.
Selecting Freewheeling Diode
Highest efficiency operation requires the use of a Schottky
type diode. DC switching losses are minimized due to its
low forward voltage drop, and AC behavior is benign due
to its lack of a significant reverse recovery time. Schottky
diodes are generally available with reverse voltage ratings
of 60V and even 100V, and are price competitive with other
types.
The use of so-called “ultrafast” recovery diodes is gener-
ally not recommended. When operating in continuous
mode, the reverse recovery time exhibited by “ultrafast”
diodes will result in a slingshot type effect. The power
internal switch will ramp up V
IN
current into the diode in an
attempt to get it to recover. Then, when the diode has
finally turned off, some tens of nanoseconds later, the V
SW
node voltage ramps up at an extremely high dV/dt, per-
haps 5 to even 10V/ns! With real world lead inductances,
the V
SW
node can easily overshoot the V
IN
rail. This can
result in poor RFI behavior and if the overshoot is severe
enough, damage the IC itself.
Selecting Bypass Capacitors
The basic topology as shown in Figure 1 uses two bypass
capacitors, one for the V
IN
input supply and one for the
V
OUT
output supply.
User selection of an appropriate output capacitor is rela-
tively easy, as this capacitor sees only the AC ripple current
in the inductor. As the LT1776 is designed for buck or
step-down applications, output voltage will nearly always
be compatible with tantalum type capacitors, which are
generally available in ratings up to 35V or so. These
tantalum types offer good volumetric efficiency and many
are available with specified ESR performance. The product
of inductor AC ripple current and output capacitor ESR will
manifest itself as peak-to-peak voltage ripple on the output
node. (Note: If this ripple becomes too large, heavier
control loop compensation, at least at the switching fre-
quency, may be required on the V
C
pin.) The most de-
manding applications, requiring very low output ripple,
may be best served not with a single extremely large
output capacitor, but instead by the common technique of
a separate L/C lowpass post filter in series with the output.
(In this case, “Two caps are better than one”.)
The input bypass capacitor is normally a more difficult
choice. In a typical application e.g., 40V
IN
to 5V
OUT
,
relatively heavy V
IN
current is drawn by the power switch
for only a small portion of the oscillator period (low ON
duty cycle). The resulting RMS ripple current, for which
the capacitor must be rated, is often several times the DC
average V
IN
current. Similarly, the “glitch” seen on the V
IN
supply as the power switch turns on and off will be related
to the product of capacitor ESR, and the relatively high
instantaneous current drawn by the switch. To compound
these problems is the fact that most of these applications
will be designed for a relatively high input voltage, for
which tantalum capacitors are generally unavailable. Rela-
tively bulky “high frequency” aluminum electrolytic types,
specifically constructed and rated for switching supply
applications, may be the only choice.

LT1776IN8#PBF

Mfr. #:
Manufacturer:
Analog Devices / Linear Technology
Description:
Switching Voltage Regulators Wide In Rng, Hi Eff, Buck Sw Reg
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union