Characteristics ACST8
4/13 Doc ID 7463 Rev 9
Figure 4. On-state rms current versus
ambient temperature
(free air convection, fulle cycle)
Figure 5. Relative variation of thermal
impedance versus pulse duration
I (A)
T(RMS)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0 25 50 75 100 125
α=180°
TO-220
D
2
PA K
Copper surface
= 1cm
2
T (°C)
amb
K=[Z /R ]
th th
1.0E-02
1.0E-01
1.0E+00
1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03
Z
th(j-a)
TO-220AB
TO-220FPAB
TO-220AB
TO-220FPAB
Z
th(j-c)
t (s)
p
Figure 6. Relative variation of gate trigger
current (I
GT
) and voltage (V
GT
)
versus junction temperature
Figure 7. Relative variation of holding
current (I
H
) and latching current (I
L
)
versus junction temperature
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-50 -25 0 25 50 75 100 125
I
GT
,V
GT
[T
j
]/I
GT
,V
GT
[T
j
=25 °C]
I
GT
Q1-Q2
V
GT
Q1-Q2-Q3
I
GT
Q3
T
j
(°C)
Typical values
0.0
0.5
1.0
1.5
2.0
2.5
-50 -25 0 25 50 75 100 125
I
H
,I
L
[T
j
]/I
H
,I
L
[T
j
=25 °C]
I
H
I
L
T
j
(°C)
Figure 8. Surge peak on-state current versus
number of cycles
Figure 9. Non repetitive surge peak on-state
current and corresponding value of
I
2
t versus sinusoidal pulse width
0
10
20
30
40
50
60
70
80
90
1 10 100 1000
I
TSM
(A)
Non repetitive
T
j
initial=25 °C
One cycle
t=20ms
Repetitive
T
C
=105 °C
Number of cycles
1
10
100
1000
0.01 0.10 1.00 10.00
I
TSM
(A), I²t (A²s)
T
j
initial=25 °C
dI/dt limitation: 100 A/µs
I
TSM
I²t
t
P
(ms)
sinusoidal pulse
with width t < 10 ms
P
ACST8 Characteristics
Doc ID 7463 Rev 9 5/13
Figure 10. On-state characteristics
(maximum values)
Figure 11. Relative variation of critical rate of
decrease of main current (dI/dt)
c
versus junction temperature
1
10
100
012345
I
TM
(A)
T
j
=25 °C
T
j
=125 °C
T
j
max :
V
to
= 0.90 V
R
d
= 50 mΩ
V
TM
(V)
(dI/dt)c[T ] /
j
(dI/dt)c[T =125°C]
j
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
25 50 75 100 125
T
j
(°C)
Figure 12. Relative variation of static dV/dt
immunity versus junction
temperature (gate open)
Figure 13. Relative variation of leakage
current versus junction
temperature
dV/dt[T ] /
j
dV/dt[T =125°C]
j
0
1
2
3
4
5
6
7
8
9
10
11
25 50 75 100 125
V
D
=V
R
=530 V
T
j
(°C)
I
DRM
/I
RRM
[Tj;V
DRM/
V
RRM
]/I
DRM
/I
RRM
[Tj=125°C;
8
00V]
1.0E-03
1.0E-02
1.0E-01
1.0E+00
25 50 75 100 125
V
DRM
=V
RRM
=800 VV
DRM
=V
RRM
=800 V
V
DRM
=V
RRM
=600 V
V
DRM
=V
RRM
=200 V
T
j
(°C)
Different blocking voltages
Figure 14. Relative variation of clamping
voltage (V
CL
) versus junction
temperature (minimum values)
Figure 15. Thermal resistance junction to
ambient versus copper surface
under tab
V
CL
[Tjj/V
CL
[Tj=25°C
]
0.85
0.90
0.95
1.00
1.05
1.10
1.15
-50 -25 0 25 50 75 100 125
T
j
(°C)
0
10
20
30
40
50
60
70
80
0 5 10 15 20 25 30 35 40
R
th(j-a)
(°C/W)
D²PAK
S
CU
(cm²)
Printed circuit board FR4,
copper thickness = 35 µm
Application information ACST8
6/13 Doc ID 7463 Rev 9
2 Application information
2.1 Typical application description
The ACST8 device has been designed to control medium power load, such as AC motors in
home appliances. Thanks to its thermal and turn off commutation performances, the ACST8
switch is able to drive an inductive load up to 8 A with no turn off additional snubber. It also
provides high thermal performances in static and transient modes such as high torque
operating conditions or inrush current of an AC motor.
Figure 16. AC induction motor control – typical diagram
Selection of the
rotor direction
AC
induction
motor
Phase shift capacitor +
protective air inductance
ACST
MCU
AC Motor
Rg
C
AC Mains
Vcc
Rg
ACST
L

ACST830-8FP

Mfr. #:
Manufacturer:
STMicroelectronics
Description:
Triacs Overvoltage Triac Static dV/dt >2000 V
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet