22
LTC1702
1702fa
Applications that require optimized transient response will
need to recalculate the compensation values specifically
for the circuit in question. The underlying mathematics are
complex, but the component values can be calculated in a
straightforward manner if we know the gain and phase of
the modulator at the crossover frequency.
Modulator gain and phase can be measured directly from
a breadboard, or can be simulated if the appropriate
parasitic values are known. Measurement will give more
accurate results, but simulation can often get close enough
to give a working system. To measure the modulator gain
and phase directly, wire up a breadboard with an LTC1702
and the actual MOSFETs, inductor, and input and output
capacitors that the final design will use. This breadboard
should use appropriate construction techniques for high
speed analog circuitry: bypass capacitors located close to
the LTC1702, no long wires connecting components,
appropriately sized ground returns, etc. Wire the feedback
amplifier as a simple type 1 loop, with a 10k resistor from
V
OUT
to FB and a 0.1µF feedback capacitor from COMP to
FB. Choose the bias resistor (R
B
) as required to set the
desired output voltage. Disconnect R
B
from ground and
connect it to a signal generator or to the source output of
a network analyzer (Figure 12) to inject a test signal into
the loop. Measure the gain and phase from the COMP pin
to the output node at the positive terminal of the output
capacitor. Make sure the analyzer’s input is AC coupled so
that the DC voltages present at both the COMP and V
OUT
“Type 3” loops (Figure 11) use two poles and two zeros to
obtain a 180° phase boost in the middle of the frequency
band. A properly designed type 3 circuit can maintain
acceptable loop stability even when low output capacitor
ESR causes the LC section to approach 180° phase shift
well above the initial LC roll-off. As with a type 2 circuit, the
loop should cross through 0dB in the middle of the phase
bump to maximize phase margin. Many LTC1702 circuits
using low ESR tantalum or OS-CON output capacitors
need type 3 compensation to obtain acceptable phase
margin with a high bandwidth feedback loop.
APPLICATIONS INFORMATION
WUU
U
OUT
IN
R1
R3
C2
C1
C3
R2
R
B
1702 F11a
V
REF
+
GAIN
(dB)
PHASE
(DEG)
1702 F11b
00
–90
180
270
+6dB/OCT
6dB/OCT
PHASE
GAIN
6dB/OCT
Figure 11a. Type 3 Amplifier Schematic Diagram
Figure 11B. Type 3 Amplifier Transfer Function
BOOST2
TG
SW
BG
FCB
FAULT
COMP
FB
RUN/SS
1/2 LTC1702
V
CC
10 MBR0530T
C
IN
5V
QT
1µF
V
OUT
TO
ANALYZER
V
COMP
TO
ANALYZER
AC
SOURCE
FROM
ANALYZER
L
EXT
QB
10µF
0.1µF
R
B
PV
CC
SGND
PGND
+
+
10k
NC
C
OUT
1702 F12
+
Figure 12. Modulator Gain/Phase Measurement Set-Up
Feedback Component Selection
Selecting the R and C values for a typical type 2 or type 3
loop is a nontrivial task. The applications shown in this data
sheet show typical values, optimized for the power com-
ponents shown. They should give acceptable performance
with similar power components, but can be way off if even
one major power component is changed significantly.
23
LTC1702
1702fa
Finally, choose a convenient resistor value for R1 (10k is
usually a good value). Now calculate the remaining values:
(K is a constant used in the calculations)
ƒ = chosen crossover frequency
G = 10
(GAIN/20)
(this converts GAIN in dB to G in absolute
gain)
Type 2 Loop:
K Tan
BOOST
C
GKR
CCK
R
K
C
R
VR
VV
B
REF
OUT REF
=+°
=
πƒ
=
()
=
πƒ
=
()
2
45
2
1
21
12 1
2
21
1
2
Type 3 Loop:
K Tan
BOOST
C
GR
CCK
R
K
C
R
R
K
C
KR
R
VR
VV
B
REF
OUT REF
=+°
=
πƒ
=
()
=
πƒ
=
()
=
πƒ
=
()
2
4
45
2
1
21
12 1
2
21
3
1
1
3
1
23
1
APPLICATIONS INFORMATION
WUU
U
nodes don’t corrupt the measurements or damage the
analyzer.
If breadboard measurement is not practical, a SPICE
simulation can be used to generate approximate gain/
phase curves. Plug the expected capacitor, inductor and
MOSFET values into the following SPICE deck and gener-
ate an AC plot of V(V
OUT
)/V(COMP) in dB and phase of
V(OUT) in degrees. Refer to your SPICE manual for details
of how to generate this plot.
*1702 modulator gain/phase
*
©
1999 Linear Technology
*this file written to run with PSpice 8.0
*may require modifications for other SPICE
simulators
*MOSFETs
rfet mod sw 0.02 ;MOSFET rdson
*inductor
lext sw out1 1u ;inductor value
rl out1 out 0.005 ;inductor series R
*output cap
cout out out2 1000u ;capacitor value
resr out2 0 0.01 ;capacitor ESR
*1702 internals
emod mod 0 comp 0 5 ;3.3 for 3.3V supply
vstim comp 0 0 ac 1 ;ac stimulus
.ac dec 100 1k 1meg
.probe
.end
With the gain/phase plot in hand, a loop crossover fre-
quency can be chosen. Usually the curves look something
like Figure 8. Choose the crossover frequency in the rising
or flat parts of the phase curve, beyond the external LC
poles. Frequencies between 10kHz and 50kHz usually
work well. Note the gain (GAIN, in dB) and phase (PHASE,
in degrees) at this point. The desired feedback amplifier
gain will be –GAIN to make the loop gain 0dB at this
frequency. Now calculate the needed phase boost, assum-
ing 60° as a target phase margin:
BOOST = –(PHASE + 30°)
If the required BOOST is less than 60°, a type 2 loop can
be used successfully, saving two external components.
BOOST values greater than 60° usually require type 3
loops for satisfactory performance.
24
LTC1702
1702fa
Accuracy Trade-Offs
The V
DS
sensing scheme used in the LTC1702 is not
particularly accurate, primarily due to uncertainty in the
R
DS(ON)
from MOSFET to MOSFET. A second error term
arises from the ringing present at the SW pin, which
causes the V
DS
to look larger than (I
LOAD
)(R
DS(ON)
) at the
beginning of QB’s on-time. These inaccuracies do not
prevent the LTC1702 current limit circuit from protecting
itself and the load from damaging overcurrent conditions,
but they do prevent the user from setting the current limit
to a tight tolerance if more than one copy of the circuit is
being built. The 50% factor in the current setting equation
above reflects the margin necessary to ensure that the
circuit will stay out of current limit at the maximum normal
load, even with a hot MOSFET that is running quite a bit
higher than its R
DS(ON)
spec.
FCB OPERATION/SECONDARY WINDINGS
The FCB pin can be used in conjunction with a secondary
winding on one side of the LTC1702 to generate a third
regulated voltage output. This output can be directly
regulated at the FCB pin. In theory, a fourth output could
be added, either unregulated or with additional external
circuitry at the FCB pin.
The extra auxiliary output is taken from a second winding
on the core of the inductor on one channel, converting it
into a transformer (Figure 13). The auxiliary output voltage
is set by the main output voltage and the turns ratio of the
extra winding to the primary winding. Load regulation at
the auxiliary output will be relatively good as long as the
main output is running in continuous mode. As the load on
the main channel drops and the LTC1702 switches to
discontinuous or Burst Mode operation, the auxiliary
output will not be able to maintain regulation, especially if
the load at the auxiliary output remains heavy.
To avoid this, the auxiliary output voltage can be divided
down with a conventional feedback resistor string with the
divided auxiliary output voltage fed back to the FCB pin
(Figure 13). The FCB pin threshold is trimmed to 800mV
APPLICATIONS INFORMATION
WUU
U
CURRENT LIMIT PROGRAMMING
Programming the current limit on the LTC1702 is straight-
forward. The I
MAX
pin sets the current limit by setting the
maximum allowable voltage drop across QB (the bottom
MOSFET) before the current limit circuit engages. The
voltage across QB is set by its on-resistance and the
current flowing in the inductor, which is the same as the
output current. The LTC1702 current limit circuit inverts
the voltage at I
MAX
before comparing it with the negative
voltage across QB, allowing the current limit to be set with
a positive voltage.
To set the current limit, calculate the expected voltage drop
across QB at the maximum desired current:
VIR CF
PROG ILIM DS ON
=
()
()
+
()
I
LIM
should be chosen to be quite a bit higher than the
expected operating current, to allow for MOSFET R
DS(ON)
changes with temperature. Setting I
LIM
to 150% of the
maximum normal operating current is usually safe and will
adequately protect the power components if they are
chosen properly. The CF term is an approximate factor that
corrects for errors caused by ringing on the switch node
(illustrated in Figure 6). This correction factor will change
depending on the layout and the components used, but
100mV is usually a good starting point. To provide ad-
equate margin and to accommodate for offsets and exter-
nal variations, it is recommended that V
PROG
be calculated
with CF = 100 ± 50mV.
V
PROG
is then programmed at the I
MAX
pin using the
internal 10µA pull-up and an external resistor:
R
ILIM
= V
PROG
/10µA
The resulting value of R
ILIM
should be checked in an actual
circuit to ensure that the I
LIM
circuit kicks in as expected.
MOSFET R
DS(ON)
specs are like horsepower ratings in
automobiles, and should be taken with a grain of salt.
Circuits that use very low values for R
IMAX
(<20k) should
be checked carefully, since small changes in R
IMAX
can
cause large I
LIM
changes when the 100mV correction
factor makes up a large percentage of the total V
PROG
value. If V
PROG
is set too low, the LTC1702 may fail to
start up.

LTC1702IGN#TRPBF

Mfr. #:
Manufacturer:
Analog Devices / Linear Technology
Description:
Switching Voltage Regulators 2x 550kHz Sync 2-PhSw Reg Cntr
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union