QwikRadio
tm
77
December 1998b
MICRF011
MICRF011 Micrel
Functional Description
Please refer to “MICRF011 Block Diagram”. Identified in the
figure are the three principal functional blocks of the IC,
namely (1) UHF Downconverter, (2) OOK Demodulator, and
(3) Reference and Control. Also shown in the figure are two
capacitors (CTH, CAGC) and one timing component (CR),
usually a ceramic resonator. With the exception of a supply
decoupling capacitor, these are all the external components
needed with the MICRF011 to construct a complete UHF
receiver. Three control inputs are shown in the block
diagram, SEL0, SEL1 and SWEN. Through these logic
inputs the user can control the operating mode and
programmable functions of the IC. These inputs are CMOS
compatible, and are pulled-up on the IC.
Input SWEN selects the operating mode of the IC (FIXED
mode or SWP mode). When low, the IC is in FIXED mode,
and functions as a conventional superheterodyne receiver.
When SWEN is high, the IC is in SWP mode. In this mode,
while the topology is still superheterodyne, the local
oscillator (LO) is deterministically swept over a range of
frequencies at rates greater than the data rate. When
coupled with a peak-detecting demodulator, this technique
effectively increases the RF bandwidth of the MICRF011, so
the device can operate in applications where significant
Transmitter/Receiver frequency misalignment may exist.
[Note: The swept LO technique does not affect the IF
bandwidth, so noise performance is not impacted relative to
FIXED mode. In other words, the IF bandwidth is the same
(500kHz) whether the device is in FIXED or SWP mode.]
Due to limitations imposed by the LO sweeping process, the
upper limit on data rate in SWP mode is approximately
2.5kbps. Data rates beyond 10kbps are possible in FIXED
mode however.
Examples of SWP mode operation include applications
which utilize low-cost LC-based transmitters, whose transmit
frequency may vary up to ± 0.5% over initial tolerance,
aging, and temperature. In this (patent-pending) mode, the
LO frequency is varied in a prescribed fashion which results
in downconversion of all signals in a band approximately
1.5% around the transmit frequency. So the Transmitter
may drift up to ± 0.5% without the need to retune the
Receiver, and without impacting system performance. Such
performance is not achieved with currently available crystal-
based superheterodyne receivers, which can operate only
with SAW or crystal based transmitters.
[Note: In SWP mode only, a range penalty will occur in
installations where there exists a competing signal of
sufficient strength in this small frequency band of 1.5%
around the transmit frequency. This results from the fact
that sweeping the LO indiscriminately “sweeps” all signals
within the sweep range down into the IF band. This same
penalty also exists with super-regenerative type receivers,
as their RF bandwidth is also generally 1.5%. So any
application for a super-regenerative receiver is also an
application for the MICRF011 in SWP mode.]
For applications where the transmit frequency is accurately
set for other reasons (e.g., applications where a SAW
transmitter is used for its mechanical stability), the user may
choose to configure the MICRF011 as a standard
superheterodyne receiver (FIXED mode), mitigating the
aforementioned problem of a competing close-in signal.
This can be accomplished by tying SWEN to ground. Doing
so forces the on-chip LO frequency to a fixed value. In
FIXED mode, the ceramic resonator would be replaced with
a crystal. Generally, however, the MICRF011 can be
operated in SWP mode, using a ceramic resonator, with
either LC or CRYSTAL/SAW based transmitters, without
any significant range difference.
The inputs SEL0 and SEL1 control the Demodulator filter
bandwidth in four binary steps (625Hz-5000Hz in SWP,
1250Hz-10000Hz in FIXED mode), and the user must select
the bandwidth appropriate to his needs.
Rolloff response of the IF Filter is 5
th
order, while the
demodulator data filter exhibits a 2
nd
order response.
Multiplication factor between the REFOSC frequency ft and
the internal Local Oscillator (LO) is 64.5X for FIXED mode,
and 64.25X for SWP mode (i.e., for ft = 6.00MHz in FIXED
mode, LO frequency = 6.00MHz * 64.5 = 387MHz).
Slicing Level and the CTH Capacitor
Extraction of the DC value of the demodulated signal for
purposes of logic-level data slicing is accomplished by
external capacitor CTH and the on-chip switched-cap
“resistor” RSC, indicated in the block diagram. The effective
resistance of RSC is 118kohms. The value of capacitor
CTH is easily calculated, once the slicing level time-constant
is chosen. Values vary somewhat with decoder type, data
pattern, and data rate, but typical Slicing Level time
constants range 5-50msec. Optimization of the CTH value
is required to maximize range, as discussed in “Application
Note 22, MICRF001 Theory of Operation”, section 6.4.
During quiet periods (i.e., no signal transmissions) the Data
Output (DO pin) transitions randomly based on noise. This
may present problems for some decoders. The most
common solution is to introduce a small offset (“Squelch”)
on the CTH pin so that noise does not trigger the internal
comparator. Usually 20-30mV is sufficient, and may be
introduced by connecting a several-Megohm resistor from
the CTH pin to either VSS or VDD, depending on the desired
offset polarity. Since the MICRF011 is an AGC’d receiver,
noise at the internal comparator input is always the same,
set by the AGC. So the squelch offset requirement does not
change as the local “ether” noise changes from installation
to installation. Note that introducing squelch will reduce
range modestly, so only introduce an amount sufficient to
“quiet” the output.
AGC Function and the CAGC Capacitor
The signal path has automatic gain control (AGC) to
increase input dynamic range. An external capacitor,
CAGC, must be connected to the CAGC pin of the device.
The ratio of decay-to-attack time-constant is fixed at 10:1
(i.e., the attack time constant is 1/10th the decay time
constant), and this ratio cannot be changed by the user.
However, the attack time constant is selectable by the user
through the value of capacitor CAGC.
QwikRadio
tm
88
December 1998b
MICRF011
MICRF011 Micrel
[By adding resistance from the CAGC pin to VDDBB or
VSSBB in parallel with the CAGC capacitor, the ratio of
decay-to-attack time-constant may be varied, although the
value of such adjustments must be studied on a per-
application basis. Generally the design value of 10:1 is
adequate for the vast majority of applications.] See
“Application Note 22”.
To maximize system range, it is important to keep the AGC
control voltage ripple low, preferably under 10mVpp once
the control voltage has attained its quiescent value. For this
reason capacitor values 0.47uF are recommended.
Reference Oscillator (REFOSC) and External Timing
Element
All timing and tuning operations on the MICRF011 are
derived from the REFOSC function. This function is a
single-pin Colpitts-type oscillator. The user may handle this
pin in one of three possible ways:
(1) connect a ceramic resonator, or
(2) connect a crystal, or
(3) drive this pin with an external timing signal.
The third approach is attractive for further lowering system
cost if an accurate reference signal exists elsewhere in the
system (e.g., a reference clock from a crystal or ceramic
resonator-based microprocessor). An externally applied
signal should be AC-coupled, and resistively-divided down
(or otherwise limited) to approximately 0.5Vpp. The specific
reference frequency required is related to the system
transmit frequency, and the operating mode of the device as
set by the SWEN control pin. See “Application Note 22,
MICRF001 Theory of Operation” for a discussion of
frequency selection and accuracy requirements.
MICRF011 Frequency and Capacitor Selection
Selection of the REFOSC frequency ft, Slicing Level (CTH)
capacitor, and AGC capacitor are briefly summarized in this
section. Please see Application Note 22 for complete
details.
1. Selecting REFOSC Frequency ft (FIXED Mode)
As with any superheterodyne receiver, the difference
between the (internal) Local Oscillator (LO) frequency flo
and the incoming Transmit frequency ftx must ideally equal
the IF Center frequency. Equation (1) may be used to
compute the appropriate flo for a given ftx:
flo = ftx ± 1.064 * (ftx / 390) (1)
where ftx and flo are in MHz. Note that two values of flo
exist for any given ftx, distinguished as “high-side mixing”
and “low-side mixing”, and there is generally no preference
of one over the other.
After choosing one of the two acceptable values of flo, use
equation (2) to compute the REFOSC frequency ft:
ft = flo / 64.5. (2)
Here ft is in MHz. Connect a crystal of frequency ft to the
REFOSC pin of the MICRF011. 4 decimal-place accuracy
on the frequency is generally adequate. The following table
identifies ft for some common Transmit frequencies when
the MICRF011 is operated in FIXED mode.
Transmit Freq. ftx (MHz) REFOSC Freq. ft (MHz)
315
418
433.92
4.8970
6.4983
6.7458
2. Selecting REFOSC Frequency ft (SWP Mode)
Selection of REFOSC frequency ft in SWP mode is much
simpler than in FIXED mode, due to the LO sweeping
process. Further, accuracy requirements of the frequency
reference component are significantly relaxed.
In SWP mode, ft is given by equation (3):
ft = ftx / 64.25. (3)
Connect a ceramic resonator of frequency ft to the REFOSC
pin of the MICRF011. 2-decimal place accuracy is generally
adequate. (A crystal may also be used if desired, but may
be necessary to reduce the Rx frequency ambiguity if the Tx
frequency ambiguity is excessive. See Application Note 22
for further details.)
3. Selecting Capacitor CTH
First step in the process is selection of a Data Slicing Level
timeconstant. This selection is strongly dependent on
system issues, like system decode response time and data
code structure (e.g., existence of data preamble, etc.). This
issue is too broad to discuss here, and the interested reader
should consult the Application Note 22.
Source impedance of the CTH pin is given by equation (4),
where ft is in MHz:
Rsc = 118k * (4.90 / ft). (4)
Assuming that a Slicing Level Timeconstant TC has been
established, capacitor CTH may be computed using
equation (5):
CTH = TC / Rsc. (5)
QwikRadio
tm
99
December 1998b
MICRF011
MICRF011 Micrel
3. Selecting CAGC Capacitor
Selection of CAGC is dictated by minimizing the ripple on
the AGC control voltage, by using a sufficiently large
capacitor. It is Micrel’s experience that CAGC should be in
the vicinity of 0.47µF to 4.7µF. Large capacitor values
should be carefully considered, as this determines the time
required for the AGC control voltage to settle from a
completely discharged condition. AGC settling time from a
completely discharged (0-volt) state is given approximately
by equation (6):
T = (1.333 * CAGC) – 0.44 (6)
where CAGC is in microfarads, and T is in seconds.
I/O Pin Interface Circuitry
Interface circuitry for the various I/O pins of the MICRF011 is
shown in Figures 1 through 6. Specific information
regarding each of these circuits is discussed in the following
sub-paragraphs. Not shown are ESD protection diodes
which are applied to all input and output pins.
1. ANT Pin
The ANT pin is internally AC-coupled via a 3pF capacitor, to
an RF N-channel MOSFET, as shown in Figure 1.
Impedance on this pin to VSS is quite high at low
frequencies, and decreases as frequency increases. In the
UHF frequency range, the device input can be modeled as
6.3k in parallel with 2pF (pin capacitance) shunt to
VSSRF.
2. CTH Pin
Figure 2 illustrates the CTH pin interface circuit. CTH pin is
driven from a P-channel MOSFET source-follower biased
with approximately 10µA of bias current. Transmission
gates TG1 and TG2 isolate the 6.9pF capacitor. Internal
control signals PHI1/PHI2 are related in a manner such that
the impedance across the transmission gates looks like a
“resistance” of approximately 118k. The DC potential on
the CTH pin is approximately 1.6V.
3. CAGC Pin
Figure 3 illustrates the CAGC pin interface circuit. The AGC
control voltage is developed as an integrated current into a
capacitor CAGC. The attack current is nominally 15µA,
while the decay current is a 1/10th scaling of this,
approximately 1.5µA. Signal gain of the RF/IF strip inside
the IC diminishes as the voltage on CAGC decreases. By
simply adding a capacitor to CAGC pin, the attack/decay
time constant ratio is fixed at 1:10. Further discussion on
setting the attack time constant is found in “Application Note
22, MICRF001 Theory of Operation”, section 6.5.
Modification of the attack/decay ratio is possible by adding
resistance from CAGC pin either to VDDBB or VSSBB, as
desired.
4. DO Pin
The output stage for the Data Comparator (DO pin) is shown
in Figure 4. The output is a 10µA push-10µA pull, switched
current stage. Such an output stage is capable of driving
CMOS-type loads. An external buffer-driver is
recommended for driving high capacitance loads.
5. REFOSC Pin
The REFOSC input circuit is shown in Figure 5. Input
impedance is quite high (200k). This is a Colpitts
oscillator, with internal 30pF capacitors. This input is
intended to work with standard ceramic resonators,
connected from this pin to VSSBB, although a crystal may
be used instead, where greater frequency accuracy is
required. The resonators should not contain integral
capacitors, since these capacitors are contained inside the
IC. Externally applied signals should be AC-coupled,
amplitude limited to approximately 0.5Vpp. The nominal DC
bias voltage on this pin is 1.4V.
6. Control Inputs (SEL0, SEL1, SWEN)
Control input circuitry is shown in Figure 6. The standard
input is a logic inverter constructed with minimum geometry
MOSFETs (Q2, Q3). P-channel MOSFET Q1 is a large
channel length device which functions essentially as a
“weak” pullup to VDDBB. Typical pullup current is 5µA,
leading to an impedance to the VDDBB supply of typically
1M.
Figure 1 ANT Pin

MICRF011BN

Mfr. #:
Manufacturer:
Description:
RF RCVR OOK 300MHZ-440MHZ 14DIP
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet