MC33178, MC33179
http://onsemi.com
7
V
O
, OUTPUT VOLTAGE (V )
pp
Source
Sink
V
CC
= +15 V
V
EE
= −15 V
V
ID
= ±1.0 V
R
L
< 10 W
T
A
= −55° to +125°C
V
CC
= +15 V
V
EE
= −15 V
DV
CC
= ±1.5 V
−PSR
+PSR
+
DV
O
A
DM
PSR = 20 Log
V
CC
V
EE
DV
O
/A
DM
DV
CC
Figure 10. Output Saturation Voltage
versus Load Current
Figure 11. Output Voltage
versus Frequency
Figure 12. Common Mode Rejection
versus Frequency Over Temperature
Figure 13. Power Supply Rejection
versus Frequency Over Temperature
Figure 14. Output Short Circuit Current
versus Output Voltage
Figure 15. Output Short Circuit Current
versus Temperature
V
sat
I
L
, LOAD CURRENT (±mA)
0 5.0 10 15 20
V
CC
= +5.0 V to +18 V
V
EE
= −5.0 V to −18 V
T
A
= +125°C
T
A
= −55°C
Source
Sink
T
A
= −55°C
f, FREQUENCY (Hz)
1.0 k 10 k 100 k 1.0 M
V
CC
= +15 V
V
EE
= −15 V
R
L
= 600 W
A
V
= +1.0 V
THD = 1.0%
T
A
= 25°C
f, FREQUENCY (Hz)
CMR, COMMON MODE REJECTION (dB)
10 100 1.0 k 10 k 100 k 1.0 M
V
CC
= +15 V
V
EE
= −15 V
V
CM
= 0 V
DV
CM
= ±1.5 V
T
A
= −55° to +125°C
PSR, POWER SUPPLY REJECTION (dB)
f, FREQUENCY (Hz)
10 100 1.0 k 10 k 100 k 1.0 M
I, OUTPUT SHORT CIRCUIT CURRENT (mA)
SC
−15 −9.0 −3.0 0 3.0 9.0 15
Source
Sink
V
CC
= +15 V
V
EE
= −15 V
V
ID
= ±1.0 V
I, OUTPUT SHORT CIRCUIT CURRENT (mA)
SC
T
A
, AMBIENT TEMPERATURE (°C)
−55 −25 0 25 50 75 100 125
, OUTPUT SATURATION VOLTAGE (V)
T
A
= +125°C
V
O
, OUTPUT VOLTAGE (V)
V
CC
V
CC
−1.0 V
V
CC
−2.0 V
V
EE
+2.0 V
V
EE
+1.0 V
V
EE
28
24
20
16
8.0
4.0
0
12
120
100
80
60
40
20
0
120
100
80
60
40
20
0
100
80
60
40
20
0
100
90
80
70
60
50
CMR = 20 Log
+
DV
CM
DV
O
x A
DM
A
DM
DV
CM
DV
O
MC33178, MC33179
http://onsemi.com
8
2B
1A
1B
2A
1A) Phase V
CC
=18 V, V
EE
= −18 V
2A) Phase V
CC
1.5 V, V
EE
= −1.5 V
1B) Gain V
CC
= 18 V, V
EE
= −18 V
2B) Gain V
CC
= 1.5 V, V
EE
= −1.5 V
T
A
= 25°C
R
L
=
C
L
= 0 pF
T
A
= +125°C
T
A
= +25°C
T
A
= −55°C
I , SUPPLY CURRENT/AMPLIFIER ( A)
Figure 16. Supply Current versus Supply
Voltage with No Load
Figure 17. Normalized Slew Rate
versus Temperature
Figure 18. Gain Bandwidth Product
versus Temperature
Figure 19. Voltage Gain and Phase
versus Frequency
Figure 20. Voltage Gain and Phase
versus Frequency
Figure 21. Open Loop Gain Margin
versus Temperature
V
CC,
|V
EE
| , SUPPLY VOLTAGE (V)
CC
μ
0 2.0 4.0 6.0 8.0 10 12 14 16 18
T
A
, AMBIENT TEMPERATURE (°C)
SR, SLEW RATE (NORMALIZED)
−55 −25 0 25 50 75 100 125
V
CC
= +15 V
V
EE
= −15 V
DV
in
= 20 V
pp
T
A
, AMBIENT TEMPERATURE (°C)
GBW, GAIN BANDWIDTH PRODUCT (MHz)
−55 −25 0 25 50 75 100 125
V
CC
= +15 V
V
EE
= −15 V
f = 100 kHz
R
L
= 600 W
C
L
= 0 pF
f, FREQUENCY (Hz)
A , VOLTAGE GAIN (dB)
V
, EXCESS PHASE (DEGREES)
100 k
φ
1.0 M 10 M 100 M
Gain
Phase
V
CC
= +15 V
V
EE
= −15 V
R
L
= 600 W
T
A
= 25°C
C
L
= 0 pF
f, FREQUENCY (Hz)
A, V
O
LTA
G
E
G
AIN (dB)
V
, PHASE (DEGREES)
100 k
φ
1.0 M 10 M 100 M
T
A
, AMBIENT TEMPERATURE (°C)
A , OPEN LOOP GAIN MARGIN (dB)
m
−55 −25 0 25 50 75 100 125
V
CC
= +15 V
V
EE
= −15 V
R
L
= 600 W
C
L
= 10 pF
C
L
= 100 pF
C
L
= 300 pF
625
500
375
250
125
0
1.15
1.10
1.05
1.00
0.95
0.90
0.85
0.80
0.75
10
8.0
6.0
4.0
2.0
0
50
40
30
20
10
0
−10
−20
−30
−40
−50
50
40
30
20
10
0
−10
−20
−30
−40
−50
15
12
9.0
6.0
3.0
0
V
O
100 pF
600 W
+
DV
in
80
100
120
140
160
180
200
220
240
260
280
80
100
120
140
160
180
200
220
240
260
280
MC33178, MC33179
http://onsemi.com
9
V
CC
= +15 V V
O
= 2.0 V
pp
V
EE
= −15 V T
A
= 25°C
R
L
= 600 W
A
V
= 1000
A
V
= 100
A
V
= 10
A
V
= 1.0
Figure 22. Phase Margin
versus Temperature
Figure 23. Phase Margin and Gain Margin
versus Differential Source Resistance
Figure 24. Open Loop Gain Margin and Phase
Margin versus Output Load Capacitance
Figure 25. Channel Separation
versus Frequency
Figure 26. Total Harmonic Distortion
versus Frequency
Figure 27. Output Impedance
versus Frequency
φ
m
V
CC
= +15 V
V
EE
= −15 V
R
L
= 600 W
C
L
= 10 pF
C
L
= 100 pF
C
L
= 300 pF
T
A
, AMBIENT TEMPERATURE (°C)
−55 −25 0 25 50 75 100 125
, PHASE MARGIN (DEGREES)
R
T
, DIFFERENTIAL SOURCE RESISTANCE (W)
A, GAIN MARGIN (dB)
m
100 1.0 k 10 k 100 k
m
φ
, PHASE MARGIN (DEGREES)
Gain Margin
Phase Margin
V
CC
= +15 V
V
EE
= −15 V
R
T
= R
1
+R
2
V
O
= 0 V
T
A
= 25°C
A, OPEN LOOP GAIN MARGIN (dB)
m
m
C
L
, OUTPUT LOAD CAPACITANCE (pF)
φ
10 100 1.0 k
, PHASE MARGIN (DEGREES)
Phase Margin
Gain Margin
V
CC
= +15 V
V
EE
= −15 V
V
O
= 0 V
f, FREQUENCY (Hz)
CS, CHANNEL SEPARATION (dB)
100 1.0 k 10 k 100 k 1.0 M
Drive Channel
V
CC
= +15 V
C
EE
= −15 V
R
L
= 600 W
T
A
= 25°C
f, FREQUENCY (Hz)
THD, TOTAL HARMONIC DISTORTION (%)
10 100 1.0 k 10 k 100 k
f, FREQUENCY (Hz)
|Z|, OUTPUT IMPEDANCE ()
O
Ω
1.0 k 10 k 100 k 1.0 M 10 M
1. A
V
= 1.0
2. A
V
= 10
3. A
V
= 100
4. A
V
= 1000
V
CC
= +15 V
V
EE
= −15 V
V
O
= 0 V
T
A
= 25°C
3
4
21
60
50
40
30
20
10
0
12
10
8.0
6.0
4.0
2.0
0
18
15
12
9.0
6.0
3.0
0
150
140
130
120
110
100
10
1.0
0.1
0.01
500
400
300
200
100
0
60
50
40
30
20
10
0
60
50
40
30
0
10
20
V
in
R
2
R
1
V
O
+
V
O
600 W
+
V
in
C
L

MC33179DG

Mfr. #:
Manufacturer:
ON Semiconductor
Description:
Operational Amplifiers - Op Amps 2-18V Quad Low Power Industrial Temp
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union