LTC3865/LTC3865-1
25
3865fb
APPLICATIONS INFORMATION
If the external clock frequency is greater than the inter-
nal oscillators frequency, f
OSC
, then current is sourced
continuously from the phase detector output, pulling up
the fi lter network. When the external clock frequency is
less than f
OSC
, current is sunk continuously, pulling down
the fi lter network. If the external and internal frequencies
are the same but exhibit a phase difference, the current
sources turn on for an amount of time corresponding to
the phase difference. The voltage on the fi lter network is
adjusted until the phase and frequency of the internal and
external oscillators are identical. At the stable operating
point, the phase detector output is high impedance and
the fi lter capacitor holds the voltage.
Typically, the external clock (on MODE/PLLIN pin)
input high threshold is 1.6V, while the input low thres-hold
is 1V. The external clock should not be applied when the
IC is in shutdown.
Minimum On-Time Considerations
Minimum on-time, t
ON(MIN)
, is the smallest time duration
that the LTC3865/LTC3865-1 is capable of turning on the
top MOSFET. It is determined by internal timing delays
and the gate charge required to turn on the top MOSFET.
Low duty cycle applications may approach this minimum
on-time limit and care should be taken to ensure that
t
V
V
ON MIN
OUT
IN
()
()
<
f
If the duty cycle falls below what can be accommodated
by the minimum on-time, the controller will begin to skip
cycles. The output voltage will continue to be regulated,
but the ripple voltage and current will increase.
The minimum on-time for the LTC3865/LTC3865-1 is
approximately 90ns, with reasonably good PCB layout,
minimum 30% inductor current ripple and at least 10mV
to 15mV ripple on the current sense signal. The mini-
mum on-time can be affected by PCB switching noise in
the voltage and current loop. As the peak sense voltage
decreases the minimum on-time gradually increases to
130ns. This is of particular concern in forced continuous
applications with low ripple current at light loads. If the
duty cycle drops below the minimum on-time limit in this
situation, a signifi cant amount of cycle skipping can occur
with correspondingly larger current and voltage ripple.
Effi ciency Considerations
The percent effi ciency of a switching regulator is equal to
the output power divided by the input power times 100%.
It is often useful to analyze individual losses to determine
what is limiting the effi ciency and which change would
produce the most improvement. Percent effi ciency can
be expressed as:
%Effi ciency = 100% – (L1 + L2 + L3 + ...)
where L1, L2, etc. are the individual losses as a percent-
age of input power.
Although all dissipative elements in the circuit produce
losses, four main sources usually account for most of the
losses in LTC3865/LTC3865-1 circuits: 1) IC V
IN
current,
2) INTV
CC
regulator current, 3) I
2
R losses, 4) Topside
MOSFET transition losses.
1. The V
IN
current is the DC supply current given in
the Electrical Characteristics table, which excludes
MOSFET driver and control currents. V
IN
current typi-
cally results in a small (<0.1%) loss.
2. INTV
CC
current is the sum of the MOSFET driver and
control currents. The MOSFET driver current results
from switching the gate capacitance of the power
MOSFETs. Each time a MOSFET gate is switched from
low to high to low again, a packet of charge dQ moves
from INTV
CC
to ground. The resulting dQ/dt is a cur-
rent out of INTV
CC
that is typically much larger than the
control circuit current. In continuous mode, I
GATECHG
= f(Q
T
+ Q
B
), where Q
T
and Q
B
are the gate charges of
the topside and bottom side MOSFETs.
LTC3865/LTC3865-1
26
3865fb
APPLICATIONS INFORMATION
Supplying INTV
CC
power through EXTV
CC
from an
output-derived source will scale the V
IN
current re-
quired for the driver and control circuits by a factor
of (Duty Cycle)/(Effi ciency). For example, in a 20V
to 5V application, 10mA of INTV
CC
current results in
approximately 2.5mA of V
IN
current. This reduces the
mid-current loss from 10% or more (if the driver was
powered directly from V
IN
) to only a few percent.
3. I
2
R losses are predicted from the DC resistances of the
fuse (if used), MOSFET, inductor, current sense resistor.
In continuous mode, the average output current fl ows
through L and R
SENSE
, but is “chopped” between the
topside MOSFET and the synchronous MOSFET. If the
two MOSFETs have approximately the same R
DS(ON)
,
then the resistance of one MOSFET can simply be
summed with the resistances of L and R
SENSE
to obtain
I
2
R losses. For example, if each R
DS(ON)
= 10mΩ, R
L
=
10mΩ, R
SENSE
= 5mΩ, then the total resistance is
25mΩ. This results in losses ranging from 2% to 8%
as the output current increases from 3A to 15A for
a 5V output, or a 3% to 12% loss for a 3.3V output.
Effi ciency varies as the inverse square of V
OUT
for the
same external components and output power level. The
combined effects of increasingly lower output voltages
and higher currents required by high performance digital
systems is not doubling but quadrupling the importance
of loss terms in the switching regulator system!
4. Transition losses apply only to the topside MOSFET(s),
and become signifi cant only when operating at high
input voltages (typically 15V or greater). Transition
losses can be estimated from:
Transition Loss = (1.7) V
IN
2
I
O(MAX)
C
RSS
f
Other “hidden” losses such as copper trace and internal
battery resistances can account for an additional 5% to
10% effi ciency degradation in portable systems. It is
very important to include these “system” level losses
during the design phase. The internal battery and fuse
resistance losses can be minimized by making sure that
C
IN
has adequate charge storage and very low ESR at the
switching frequency. A 25W supply will typically require a
minimum of 20µF to 40µF of capacitance having a max-
imum of 20mΩ to 50mΩ of ESR. The LTC3865 2-phase
architecture typically halves this input capacitance require-
ment over competing solutions. Other losses including
Schottky conduction losses during dead time and induc-
tor core losses generally account for less than 2% total
additional loss.
Checking Transient Response
The regulator loop response can be checked by looking at
the load current transient response. Switching regulators
take several cycles to respond to a step in DC (resistive)
load current. When a load step occurs, V
OUT
shifts by an
amount equal to ΔI
LOAD
(ESR), where ESR is the effective
series resistance of C
OUT
. ΔI
LOAD
also begins to charge or
discharge C
OUT
generating the feedback error signal that
forces the regulator to adapt to the current change and
return V
OUT
to its steady-state value. During this recovery
time V
OUT
can be monitored for excessive overshoot or
ringing, which would indicate a stability problem. The
availability of the I
TH
pin not only allows optimization of
control loop behavior but also provides a DC coupled and
AC fi ltered closed loop response test point. The DC step,
rise time and settling at this test point truly refl ects the
closed loop response. Assuming a predominantly second
order system, phase margin and/or damping factor can be
estimated using the percentage of overshoot seen at this
pin. The bandwidth can also be estimated by examining the
rise time at the pin. The I
TH
external components shown
in the Typical Application circuit will provide an adequate
starting point for most applications.
LTC3865/LTC3865-1
27
3865fb
APPLICATIONS INFORMATION
The I
TH
series R
C
-C
C
lter sets the dominant pole-zero
loop compensation. The values can be modifi ed slightly
(from 0.5 to 2 times their suggested values) to optimize
transient response once the fi nal PC layout is done and
the particular output capacitor type and value have been
determined. The output capacitors need to be selected
because the various types and values determine the loop
gain and phase. An output current pulse of 20% to 80%
of full-load current having a rise time of 1µs to 10µs will
produce output voltage and I
TH
pin waveforms that will
give a sense of the overall loop stability without break-
ing the feedback loop. Placing a power MOSFET directly
across the output capacitor and driving the gate with an
appropriate signal generator is a practical way to produce
a realistic load step condition. The initial output voltage
step resulting from the step change in output current may
not be within the bandwidth of the feedback loop, so this
signal cannot be used to determine phase margin. This
is why it is better to look at the I
TH
pin signal which is in
the feedback loop and is the fi ltered and compensated
control loop response. The gain of the loop will be in-
creased by increasing R
C
and the bandwidth of the loop
will be increased by decreasing C
C
. If R
C
is increased by
the same factor that C
C
is decreased, the zero frequency
will be kept the same, thereby keeping the phase shift the
same in the most critical frequency range of the feedback
loop. The output voltage settling behavior is related to the
stability of the closed-loop system and will demonstrate
the actual overall supply performance.
A second, more severe transient is caused by switching
in loads with large (>1µF) supply bypass capacitors. The
discharged bypass capacitors are effectively put in parallel
with C
OUT
, causing a rapid drop in V
OUT
. No regulator can
alter its delivery of current quickly enough to prevent this
sudden step change in output voltage if the load switch
resistance is low and it is driven quickly. If the ratio of
C
LOAD
to C
OUT
is greater than 1:50, the switch rise time
should be controlled so that the load rise time is limited
to approximately 25 • C
LOAD
. Thus a 10µF capacitor would
require a 250µs rise time, limiting the charging current
to about 200mA.
PC Board Layout Checklist
When laying out the printed circuit board, the following
checklist should be used to ensure proper operation of
the IC. These items are also illustrated graphically in the
layout diagram of Figure 12. Figure 13 illustrates the
current waveforms present in the various branches of
the 2-phase synchronous regulators operating in the
continuous mode. Check the following in your layout:
1. Are the top N-channel MOSFETs M1 and M3 located
within 1 cm of each other with a common drain con-
nection at C
IN
? Do not attempt to split the input de-
coupling for the two channels as it can cause a large
resonant loop.
2. Are the signal and power grounds kept separate? The
combined IC signal ground pin and the ground return
of C
INTVCC
must return to the combined C
OUT
(–) ter-
minals. The V
OSENSE
and I
TH
traces should be as short
as possible. The path formed by the top N-channel
MOSFET, Schottky diode and the C
IN
capacitor should
have short leads and PC trace lengths. The output
capacitor (–) terminals should be connected as close
as possible to the (–) terminals of the input capacitor
by placing the capacitors next to each other and away
from the Schottky loop described above.
3. Do the LTC3865 V
OSENSE
pins connect to the (+) terminals
of C
OUT
? The connections between the V
OSENSE
pins
and C
OUT
should not be along the high current input
feeds from the input capacitor(s).
4. Are the SENSE
+
and SENSE
leads routed together with
minimum PC trace spacing? The fi lter capacitor between
SENSE
+
and SENSE
should be as close as possible
to the IC. Ensure accurate current sensing with Kelvin
connections at the sense resistor or inductor, whichever
is used for current sensing.
5. Is the INTV
CC
decoupling capacitor connected close to
the IC, between the INTV
CC
and the power ground pins?
This capacitor carries the MOSFET drivers current peaks.
An additional 1µF ceramic capacitor placed immediately
next to the INTV
CC
and PGND pins can help improve
noise performance substantially.

LTC3865EUH#TRPBF

Mfr. #:
Manufacturer:
Analog Devices / Linear Technology
Description:
Switching Voltage Regulators Dual, 2-Phase Synchronous DC/DC Controller with Pin Selectable Outputs
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union