LT5515EUF#PBF

LT5515
4
5515fa
SUPPLY VOLTAGE (V)
4.0
SUPPLY CURRENT (mA)
170
150
130
110
90
70
5.5
5515 ¥ G01
4.5 5.0
T
A
= 85°C
T
A
= 25°C
T
A
= – 40°C
RF INPUT FREQUENCY (GHz) RF INPUT FREQUENCY (GHz)
1.7
GAIN (dB), NF (dB), IIP3 (dBm)
25
20
15
10
5
0
–5
2.0 2.2
5515 ¥ G02
1.8 1.9
2.1 2.3 2.4
1.7 2.0 2.2
1.8 1.9
2.1 2.3 2.4
IIP2 (dBm)
70
60
50
40
30
20
5515 ¥ G03
RF INPUT POWER (dBm)
–16
P
OUT
, IM3 (dBm/TONE)
20
0
–20
–40
–60
–80
–100
–12
–8 –4 0
5515 ¥ G04
48
RF INPUT FREQUENCY (GHz)
1.7
GAIN MISMATCH (dB)
1.4
1.0
0.6
0.2
– 0.2
0.6
1.9
2.1
2.2
5515 ¥ G05
1.8
2.0
2.3
2.4
RF INPUT FREQUENCY (GHz)
1.7
PHASE MISMATCH (DEG)
6
4
2
0
–2
–4
–6
2.0 2.2
5515 ¥ G06
1.8 1.9
2.1 2.3 2.4
SUPPLY VOLTAGE (V)
CONV GAIN (dB), IIP3 (dBm)
24
20
16
12
8
4
0
–4
5515 ¥ G07
4.0 4.5 5.0 5.5
LO INPUT POWER (dBm)
–12
NF (dB)
20
18
16
14
12
10 –8 –6 –4
5515 ¥ G08
–2 0
LO INPUT POWER (dBm)
CONV GAIN (dB), IIP3 (dBm)
24
20
16
12
8
4
0
–4
5515 ¥ G09
–12
–10
–8 –6 –4 –2 0
IIP3
NF
CONV GAIN
IIP3
CONV GAIN
P
LO
= –5dBm
T
A
= 25°C
V
CC
= 5V
P
LO
= –5dBm
T
A
= 25°C
V
CC
= 5V
T
A
= 25°C
V
CC
= 5V
f
BB
= 1MHz
P
LO
= –5dBm
V
CC
= 5V
f
BB
= 1MHz
P
LO
= –5dBm
f
LO
= 1901MHz
V
CC
= 5V
f
LO
= 1901MHz
P
LO
= –5dBm
OUTPUT POWER
IM3
T
A
= 85°C
T
A
= 85°C
T
A
= 85°C
T
A
= – 40°C
T
A
= – 40°C
T
A
= – 40°C
T
A
= 25°C
T
A
= 25°C
T
A
= 85°C
T
A
= 85°C
T
A
= – 40°C
T
A
= – 40°C
T
A
= 25°C
IIP3
CONV GAIN
f
LO
= 1901MHz
V
CC
= 5V
T
A
= 25°C
T
A
= 25°C
f
RF
= 1.7GHz
f
RF
= 1.9GHz
f
RF
= 2.1GHz
T
A
= 85°C
T
A
= 85°C
T
A
= 25°C
T
A
= – 40°C
T
A
= – 40°C
T
A
= 25°C
TYPICAL PERFOR A CE CHARACTERISTICS
UW
(Test circuit optimized for 1.9GHz operation as shown in Figure 2)
Supply Current vs Supply Voltage
Conv Gain, NF, IIP3 vs
RF Input Frequency
IIP2 vs RF Input Frequency
I/Q Output Power, IM3 vs
RF Input Power
I/Q Gain Mismatch vs
RF Input Frequency
I/Q Phase Mismatch vs
RF Input Frequency
Conv Gain, IIP3 vs
Supply Voltage
NF vs LO Input Power
Conv Gain, IIP3 vs
LO Input Power
LT5515
5
5515fa
TYPICAL PERFOR A CE CHARACTERISTICS
UW
(Test circuit optimized for 1.9GHz operation as shown in Figure 2)
LO INPUT POWER (dBm)
–10
IIP2 (dBm)
–4
0
5515 ¥ G10
–8 –6 –2
70
65
60
55
50
45
40
35
30
IIP3
IIP2
NF
f
LO
= 1901MHz
V
CC
= 5V
T
A
= 85°C
T
A
= – 40°C
T
A
= 25°C
LO INPUT POWER (dBm)
0
LO-RF LEAKAGE (dBm)
–40
–45
–50
–55
–60
–2–4–6–8
5515 ¥ G11
–10–12
RF INPUT POWER (dBm)
–15
RF-LO ISOLATION (dB)
80
70
60
50
40
30
20
–10 –5 0 5
5515 ¥ G12
10
R1 ()
GAIN (dB), NF (dB), IIP3 (dBm)
5515 ¥ G15
25
20
15
10
5
0
–5
2
4
6
7
35
8
9
10
BASEBAND FREQUENCY (MHz)
0.1
CONV GAIN (dB)
1000
5515 ¥ G14
1
10
100
2
0
–2
–4
–6
–8
FREQUENCY (GHz)
1.5
RETURN LOSS (dB)
2.5
5515 ¥ G13
2.0
3.0
0
–5
–10
–15
–20
R1 ()
SUPPLY CURRENT (mA), IIP2 (dBm)
5515 ¥ G16
150
130
110
90
70
50
30
2
4
6
7
35
8
9
10
f
RF
= 1.7GHz
f
RF
= 1.7GHz
f
RF
= 1.9GHz
f
RF
= 1.9GHz
f
RF
= 2.2GHz
f
RF
= 2.4GHz
f
RF
= 2.2GHz
f
RF
= 2.4GHz
T
A
= 25°C
V
CC
= 5V
T
A
= 25°C
V
CC
= 5V
RF
LO
f
LO
= 1.9GHz
V
CC
= 5V
T
A
= 85°C
T
A
= 25°C
T
A
= – 40°C
f
LO
= 1901MHz
P
LO
= –5dBm
T
A
= 25°C
V
CC
= 5V
f
LO
= 1901MHz
P
LO
= –5dBm
T
A
= 25°C
V
CC
= 5V
CONV GAIN
SUPPLY CURRENT
IIP2 vs LO Input Power
LO-RF Leakage vs
LO Input Power
RF-LO Isolation vs
RF Input Power
RF, LO Port Return Loss vs
Frequency
Supply Current, IIP2 vs R1
Conv Gain, NF, IIP3 vs R1
Conv Gain vs
Baseband Frequency
LT5515
6
5515fa
GND (Pins 1, 4): Ground Pin.
RF
+
, RF
(Pins 2, 3): Differential RF Input Pins. These
pins are internally biased to 1.54V. They must be driven
with a differential signal. An external matching network is
required for impedance transformation.
V
CC
(Pins 5, 8, 9, 12): Power Supply Pins. These pins
should be decoupled using 1000pF and 0.1µF capacitors.
V
CM
(Pin 6): Common Mode and DC Return for the I-Mixer
and Q-Mixer. An external resistor must be connected
between this pin and ground to set the DC bias current of
the I/Q demodulator.
EN (Pin 7): Enable Pin. When the input voltage is higher
than 1.6V, the circuit is completely turned on. When the
input voltage is less than 1.3V, the circuit is turned off.
PI FU CTIO S
UUU
LO
+
, LO
(Pins 10, 11): Differential Local Oscillator Input
Pins. These pins are internally biased to 2.44V. They can
be driven single-ended by connecting one to an AC ground
through a 1000pF capacitor. However, differential input
drive is recommended to minimize LO feedthrough to the
RF input pins.
Q
OUT
, Q
OUT
+
(Pins 13, 14): Differential Baseband Output
Pins of the Q-Channel. The internal DC bias voltage is V
CC
0.85V for each pin.
I
OUT
, I
OUT
+
(Pins 15, 16): Differential Baseband Output
Pins of the I-Channel. The internal DC bias voltage is V
CC
0.85V for each pin.
GROUND (Pin 17, Backside Contact): Ground Return for
the Entire IC. This pin must be soldered to the printed
circuit board ground plane.
BLOCK DIAGRA
W
RF
+
I
OUT
+
LO
+
LO
0°/90°
BIAS
16
I
OUT
15
Q
OUT
+
14
Q
OUT
13
LO BUFFERS
LPF
I-MIXER
LPF
Q-MIXER
2
5
V
CC
7
EN
1
GND GND
8
V
CC
9
4
V
CC
12
V
CC
RF
5515 BD
3
V
CM
6
17 10 11
RF AMP

LT5515EUF#PBF

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Modulator / Demodulator 1.5GHz - 2.5GHz Quadrature Demodulator
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet