Features
Fast Read Access Time – 70 ns
5-volt Only Reprogramming
Sector Program Operation
Single Cycle Reprogram (Erase and Program)
512 Sectors (128 Bytes/Sector)
Internal Address and Data Latches for 128 Bytes
Internal Program Control and Timer
Hardware and Software Data Protection
Fast Sector Program Cycle Time – 10 ms
DATA Polling for End of Program Detection
Low Power Dissipation
50 mA Active Current
300 µA CMOS Standby Current
Typical Endurance > 10,000 Cycles
Single 5V ± 10% Supply
CMOS and TTL Compatible Inputs and Outputs
Green (Pb/Halide-free) Packaging Option
1. Description
The AT29C512 is a 5-volt only in-system Flash programmable and erasable read only
memory (PEROM). Its 512K of memory is organized as 65,536 words by 8 bits. Man-
ufactured with Atmel’s advanced nonvolatile CMOS technology, the device offers
access times to 70 ns with power dissipation of just 275 mW over the industrial tem-
perature range. When the device is deselected, the CMOS standby current is less
than 300 µA. The device endurance is such that any sector can typically be written to
in excess of 10,000 times.
To allow for simple in-system reprogrammability, the AT29C512 does not require high
input voltages for programming. Five-volt-only commands determine the operation of
the device. Reading data out of the device is similar to reading from an EPROM.
Reprogramming the AT29C512 is performed on a sector basis; 128 bytes of data are
loaded into the device and then simultaneously programmed.
During a reprogram cycle, the address locations and 128 bytes of data are internally
latched, freeing the address and data bus for other operations. Following the initiation
of a program cycle, the device will automatically erase the sector and then program
the latched data using an internal control timer. The end of a program cycle can be
detected by DATA
polling of I/O7. Once the end of a program cycle has been
detected, a new access for a read or program can begin.
512K (64K x 8)
5-volt Only
Flash Memory
AT29C512
0456i–FLASH–9/08
2
0456i–FLASH–9/08
AT29C512
2. Pin Configurations
2.1 32-lead PLCC Top View
2.2 32-lead TSOP (Type 1) Top View
Pin Name Function
A0 - A15 Addresses
CE Chip Enable
OE
Output Enable
WE
Write Enable
I/O0 - I/O7 Data Inputs/Outputs
NC No Connect
5
6
7
8
9
10
11
12
13
29
28
27
26
25
24
23
22
21
A7
A6
A5
A4
A3
A2
A1
A0
I/O0
A14
A13
A8
A9
A11
OE
A10
CE
I/O7
4
3
2
1
32
31
30
14
15
16
17
18
19
20
I/O1
I/O2
GND
I/O3
I/O4
I/O5
I/O6
A12
A15
NC
NC
VCC
WE
NC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
A11
A9
A8
A13
A14
NC
WE
VCC
NC
NC
A15
A12
A7
A6
A5
A4
OE
A10
CE
I/O7
I/O6
I/O5
I/O4
I/O3
GND
I/O2
I/O1
I/O0
A0
A1
A2
A3
3
0456i–FLASH–9/08
AT29C512
3. Block Diagram
4. Device Operation
4.1 Read
The AT29C512 is accessed like an EPROM. When CE and OE are low and WE is high, the data
stored at the memory location determined by the address pins is asserted on the outputs. The
outputs are put in the high impedance state whenever CE
or OE is high. This dual-line control
gives designers flexibility in preventing bus contention.
4.2 Byte Load
Byte loads are used to enter the 128 bytes of a sector to be programmed or the software codes
for data protection. A byte load is performed by applying a low pulse on the WE
or CE input with
CE
or WE low (respectively) and OE high. The address is latched on the falling edge of CE or
WE
, whichever occurs last. The data is latched by the first rising edge of CE or WE.
4.3 Program
The device is reprogrammed on a sector basis. If a byte of data within a sector is to be changed,
data for the entire sector must be loaded into the device. Any byte that is not loaded during the
programming of its sector will be indeterminate. Once the bytes of a sector are loaded into the
device, they are simultaneously programmed during the internal programming period. After the
first data byte has been loaded into the device, successive bytes are entered in the same man-
ner. Each new byte to be programmed must have its high-to-low transition on WE
(or CE) within
150 µs of the low-to-high transition of WE
(or CE) of the preceding byte. If a high-to-low transi-
tion is not detected within 150 µs of the last low-to-high transition, the load period will end and
the internal programming period will start. A7 to A15 specify the sector address. The sector
address must be valid during each high-to-low transition of WE
(or CE). A0 to A6 specify the
byte address within the sector. The bytes may be loaded in any order; sequential loading is not
required. Once a programming operation has been initiated, and for the duration of t
WC
, a read
operation will effectively be a polling operation.

AT29C512-70JU

Mfr. #:
Manufacturer:
Microchip Technology / Atmel
Description:
NOR Flash 64K x 8 70 ns 4.5V-5.5V
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union