IRF7665S2TRPBF

www.irf.com 1
07/02/09
IRF7665S2TRPbF
IRF7665S2TR1PbF
Notes through are on page 2
Applicable DirectFET Outline and Substrate Outline (see p. 6, 7 for details)
DIGITAL AUDIO MOSFET
Description
This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes the
latest processing techniques to achieve low on-resistance per silicon area. Furthermore, gate charge, body-diode reverse
recovery and internal gate resistance are optimized to improve key Class-D audio amplifier performance factors such as
efficiency, THD, and EMI.
The IRF7665S2TR/TR1PbF device utilizes DirectFET
TM
packaging technology. DirectFET
TM
packaging technology offers lower
parasitic inductance and resistance when compared to conventional wirebonded SOIC packaging. Lower inductance im-
proves EMI performance by reducing the voltage ringing that accompanies fast current transients. The DirectFET
TM
package is
compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red
or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing method and
processes. The DirectFET
TM
package also allows dual sided cooling to maximize thermal transfer in power systems, improving
thermal resistance and power dissipation. These features combine to make this MOSFET a highly efficient, robust and reliable
device for Class-D audio amplifier applications.
Features
Key parameters optimized for Class-D audio amplifier
applications
Low R
DS(on)
for improved efficiency
Low Q
g
for better THD and improved efficiency
Low Q
rr
for better THD and lower EMI
Low package stray inductance for reduced ringing and lower
EMI
Can deliver up to 100W per channel into 8 with no heatsink
Dual sided cooling compatible
· Compatible with existing surface mount technologies
· RoHS compliant containing no lead or bromide
· Lead-Free (Qualified up to 260°C Reflow)
· Industrial Qualified
DirectFET ISOMETRIC
PD - 96239
SB SC M2 M4 L4 L6 L8
SB
V
DS
100 V
R
DS
(
on
)
typ. @ V
GS
= 10V 51
m
Q
g
typ.
8.3 nC
R
G(int)
typ.
3.5
Key Parameters
Absolute Maximum Ratings
Parameter Units
V
DS
Drain-to-Source Voltage
V
GS
Gate-to-Source Voltage
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V
I
D
@ T
A
= 25°C
Continuous Drain Current, V
GS
@ 10V
I
DM
Pulsed Drain Current
P
D
@T
C
= 25°C
Maximum Power Dissipation
P
D
@T
C
= 100°C Power Dissipation
P
D
@T
A
= 25°C
Power Dissipation
Linear Derating Factor W/°C
T
J
Operating Junction and
T
STG
Storage Temperature Range
Thermal Resistance
Parameter Typ. Max. Units
R
θJA
Junction-to-Ambient
––– 63
R
θJA
Junction-to-Ambient
12.5 –––
R
θJA
Junction-to-Ambient
20 –––
R
θJ-Can
Junction-to-Can
––– 5.0
R
θJ-PCB
Junction-to-PCB Mounted
1.4 –––
°C/W
V
A
W
°C
-55 to + 175
0.2
15
2.4
30
Max.
10.2
4.1
58
100
± 20
14.4
IRF7665S2TR/TR1PbF
2 www.irf.com
S
D
G
Notes:
Repetitive rating; pulse width limited by
max. junction temperature.
Starting T
J
= 25°C, L = 0.944mH, R
G
= 25, I
AS
= 8.9A.
Surface mounted on 1 in. square Cu board.
Pulse width 400µs; duty cycle 2%.
C
oss
eff. is a fixed capacitance that gives the same
charging time as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
Used double sided cooling , mounting pad.
Mounted on minimum footprint full size board with
metalized back and with small clip heatsink.
T
C
measured with thermal couple mounted to top
(Drain) of part.
R
θ
is measured at T
J
of approximately 90°C.
Based on testing done using a typical device & evaluation board
at Vbus=±45V, f
SW
=400KHz, and T
A
=25°C. The delta case
temperature T
C
is 55°C.
Static @ T
J
= 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
V
(BR)DSS
Drain-to-Source Breakdown Voltage 100 ––– ––– V
V
(BR)DSS
/T
J
Breakdown Voltage Temp. Coefficient ––– 0.10 ––– V/°C
R
DS(on)
Static Drain-to-Source On-Resistance ––– 51 62
m
V
GS(th)
Gate Threshold Voltage 3.0 4.0 5.0 V
I
DSS
Drain-to-Source Leakage Current ––– ––– 20 µA
––– ––– 250
I
GSS
Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
R
G(int)
Internal Gate Resistance ––– 3.5 5.0
Dynamic @ T
J
= 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
gfs Forward Transconductance 8.8 ––– ––– S
Q
g
Total Gate Charge ––– 8.3 13
V
DS
= 50V
Q
gs1
Pre-Vth Gate-to-Source Charge –– 1.9 –––
V
GS
= 10V
Q
gs2
Post-Vth Gate-to-Source Charge –– 0.77 ––
I
D
= 8.9A
Q
gd
Gate-to-Drain Charge ––– 3.2 –– nC See Fig. 6 and 17
Q
godr
Gate Charge Overdrive ––– 2.4 ––
Q
sw
Switch Charge (Q
gs2
+ Q
gd
)
––– 4.0 ––
t
d(on)
Turn-On Delay Time ––– 3.8 ––
t
r
Rise Time ––– 6.4 ––
t
d(off)
Turn-Off Delay Time ––– 7.1 ––– ns
t
f
Fall Time ––– 3.6 ––
C
iss
Input Capacitance ––– 515 –––
C
oss
Output Capacitance ––– 112 –––
C
rss
Reverse Transfer Capacitance ––– 30 ––– pF
C
oss
Output Capacitance ––– 533 –––
C
oss
Output Capacitance ––– 67 –––
C
oss
eff.
Effective Output Capacitance ––– 115 –––
Avalanche Characteristics
Parameter Units
E
AS
Single Pulse Avalanche Energy mJ
I
AR
Avalanche Current A
Diode Characteristics
Parameter Min. Typ. Max. Units
I
S
Continuous Source Current
(Body Diode) A
I
SM
Pulsed Source Current
(Body Diode)
V
SD
Diode Forward Voltage ––– ––– 1.3 V
t
r
r
Reverse Recovery Time ––– 33 ––– ns
Q
r
r
Reverse Recovery Charge ––– 38 ––– nC
V
GS
= 20V
Max.
V
GS
= 0V, V
DS
= 1.0V, ƒ = 1.0MHz
V
GS
= 0V, V
DS
= 80V, ƒ = 1.0MHz
V
GS
= 0V, V
DS
= 0V to 80V
V
DD
= 50V
I
D
= 8.9A
R
G
= 6.8
V
GS
= -20V
T
J
= 25°C, I
S
= 8.9A, V
GS
= 0V
T
J
= 25°C, I
F
= 8.9A, V
DD
= 25V
di/dt = 100As
Conditions
V
GS
= 0V, I
D
= 250µA
Reference to 25°C, I
D
= 1mA
V
GS
= 10V, I
D
= 8.9A
V
DS
= V
GS
, I
D
= 25µA
V
DS
= 100V, V
GS
= 0V
V
DS
= 80V, V
GS
= 0V, T
J
= 125°C
MOSFET symbol
showing the
integral reverse
p-n junction diode.
Conditions
V
GS
= 10V
V
GS
= 0V
V
DS
= 25V
ƒ = 1.0MHz
37
8.9
Typ.
–––
–––
Conditions
V
DS
= 25V, I
D
= 8.9A
––– ––– 14.4
58––– –––
IRF7665S2TR/TR1PbF
www.irf.com 3
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
0.1 1 10 100
V
DS
, Drain-to-Source Voltage (V)
0.1
1
10
100
I
D
,
D
r
a
i
n
-
t
o
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
5.0V
60µs
PULSE WIDTH
Tj = 175°C
VGS
TOP 15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
BOTTOM 5.0V
-60 -40 -20 0 20 40 60 80 100120140160180
T
J
, Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
R
D
S
(
o
n
)
,
D
r
a
i
n
-
t
o
-
S
o
u
r
c
e
O
n
R
e
s
i
s
t
a
n
c
e
(
N
o
r
m
a
l
i
z
e
d
)
I
D
= 8.9A
V
GS
= 10V
1 10 100
V
DS
, Drain-to-Source Voltage (V)
10
100
1000
10000
C
,
C
a
p
a
c
i
t
a
n
c
e
(
p
F
)
V
GS
= 0V, f = 1 MHZ
C
iss
= C
gs
+ C
gd
, C
ds
SHORTED
C
rss
= C
gd
C
oss
= C
ds
+ C
gd
C
oss
C
rss
C
iss
024681012
Q
G
,
Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
V
G
S
,
G
a
t
e
-
t
o
-
S
o
u
r
c
e
V
o
l
t
a
g
e
(
V
)
V
DS
= 80V
V
DS
= 50V
VDS= 20V
I
D
= 8.9A
0.1 1 10 100
V
DS
, Drain-to-Source Voltage (V)
0.001
0.01
0.1
1
10
100
I
D
,
D
r
a
i
n
-
t
o
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
VGS
TOP 15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
BOTTOM 5.0V
60µs
PULSE WIDTH
Tj = 25°C
5.0V
2 4 6 8 10 12 14 16
V
GS
, Gate-to-Source Voltage (V)
0.01
0.1
1
10
100
I
D
,
D
r
a
i
n
-
t
o
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
T
J
= -40°C
TJ = 25°C
TJ = 175°C
V
DS
= 25V
60µs PULSE WIDTH

IRF7665S2TRPBF

Mfr. #:
Manufacturer:
Infineon / IR
Description:
MOSFET 100V DIGITAL AUDIO 1 N-CH HEXFET
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet