ADA4898-1/ADA4898-2 Data Sheet
±5 V SUPPLY
T
A
= 25°C, G = +1, R
F
= 0 Ω, R
G
open, R
L
= 1 kΩ to GND (for G > 1, R
F
= 100 Ω), unless otherwise noted.
Table 2.
Parameter Conditions Min Typ Max Unit
DYNAMIC PERFORMANCE
−3 dB Bandwidth V
OUT
= 100 mV p-p 57 MHz
V
OUT
= 2 V p-p 12 MHz
Bandwidth for 0.1 dB Flatness G = +2, V
OUT
= 2 V p-p 3 MHz
Slew Rate V
OUT
= 2 V step 50 V/µs
Settling Time to 0.1% V
OUT
= 2 V step 90 ns
NOISE/DISTORTION PERFORMANCE
Harmonic Distortion SFDR f = 100 kHz, V
OUT
= 2 V p-p 110 dBc
f = 500 kHz, V
OUT
= 2 V p-p
95
dBc
f = 1 MHz, V
OUT
= 2 V p-p −78 dBc
Input Voltage Noise f = 1 kHz 0.9 nV/√Hz
Input Current Noise f = 1 kHz 2.4 pA/√Hz
DC PERFORMANCE
Input Offset Voltage R
F
= 1 kΩ, see Figure 43 30 160 µV
Input Offset Voltage Drift R
F
= 1 kΩ, see Figure 43 1 µV/°C
Input Bias Current R
F
= 1 kΩ, see Figure 43 −0.1 −0.5 µA
Input Bias Offset Current R
F
= 1 kΩ, see Figure 43 0.05 0.3 µA
Input Bias Current Drift R
F
= 1 kΩ, see Figure 43 2 nA/°C
Open-Loop Gain V
OUT
= ±1 V 87 94 dB
INPUT CHARACTERISTICS
Input Resistance Differential mode 5 kΩ
Common mode 30 MΩ
Input Capacitance Differential mode 3.2 pF
Common mode 2.5 pF
Input Common-Mode Voltage Range See Figure 43 −3 to +2.5 V
Common-Mode Rejection Ratio ΔV
CM
= 1 V p-p 102 −120 dB
PD
(POWER-DOWN) PIN (ADA4898-1)
PD
Input Voltages
Chip powered down
≤−4
V
Chip enabled ≥−3 V
PD
Turn On Time V
OUT
= 100 mV p-p 100 ns
PD
Turn Off Time V
OUT
= 100 mV p-p 20 μs
Input Leakage Current
PD
= +V
S
0.1 µA
PD
= −V
S
−2 µA
OUTPUT CHARACTERISTICS
Output Voltage Swing R
L
// (R
F
+ R
G
) = 500, see Figure 43 ±3.1 ±3.2 V
R
L
// (R
F
+ R
G
) = 1 kΩ, see Figure 43 ±3.3 ±3.4 V
Linear Output Current f = 100 kHz, SFDR = −70 dBc, R
L
= 150 Ω 8 mA
Short-Circuit Current Sinking/sourcing 150 mA
Off Isolation f = 1 MHz,
PD
= −V
S
80 dB
POWER SUPPLY
Operating Range ±4.5 ±16.5 V
Quiescent Current Per Amplifier
PD
= +V
S
7.5 8.4 mA
PD
= −V
S
0.1 0.2 mA
Positive Power Supply Rejection Ratio +V
S
= 5 V to 7 V, −V
S
= −5 V −95 −100 dB
Negative Power Supply Rejection Ratio
+V
S
= 5 V, −V
S
= −5 V to −7 V
−97
−104
dB
Rev. E | Page 4 of 20
Data Sheet ADA4898-1/ADA4898-2
ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter Rating
Supply Voltage 36 V
Power Dissipation
See Figure 4
Differential Mode Input Voltage ±1.5 V
Common-Mode Input Voltage ±11.4 V
Storage Temperature Range −65°C to +150°C
Operating Temperature Range −40°C to +105°C
Lead Temperature (Soldering, 10 sec) 300°C
Junction Temperature 150°C
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
THERMAL RESISTANCE
θ
JA
is specified for the worst-case conditions; that is, θ
JA
is
specified for a device soldered in the circuit board with its
exposed paddle soldered to a pad on the PCB surface that is
thermally connected to a copper plane, with zero airflow.
Table 4.
Package Type θ
JA
θ
JC
Unit
Single 8-Lead SOIC_N_EP on a 4-Layer Board 47 29
°C/W
Dual 8-Lead SOIC_N_EP on a 4-Layer Board 42 29
°C/W
MAXIMUM POWER DISSIPATION
The maximum safe power dissipation in the ADA4898-1/
ADA4898-2 package is limited by the associated rise in junction
temperature (T
J
) on the die. At approximately 150°C, which is
the glass transition temperature, the plastic changes its properties.
Even temporarily exceeding this temperature limit can change
the stresses that the package exerts on the die, permanently
shifting the parametric performance of the ADA4898-1/
ADA4898-2. Exceeding a junction temperature of 150°C for an
extended period can result in changes in the silicon devices,
potentially causing failure.
The power dissipated in the package (P
D
) is the sum of the
quiescent power dissipation and the power dissipated in the
package due to the output load drive. The quiescent power is
the voltage between the supply pins (V
S
) times the quiescent
current (I
S
). The power dissipated due to the load drive depends
upon the particular application. For each output, the power due
to load drive is calculated by multiplying the load current by the
associated voltage drop across the device. RMS voltages and
currents must be used in these calculations.
Airflow increases heat dissipation, effectively reducing θ
JA
. In
addition, more metal directly in contact with the package leads
from metal traces, through holes, ground, and power planes
reduces the θ
JA
. The exposed paddle on the underside of the
package must be soldered to a pad on the PCB surface that is
thermally connected to a copper plane to achieve the specified θ
JA
.
Figure 4 shows the maximum power dissipation vs. the ambient
temperature for the single and dual 8-lead SOIC_N_EP on a
JEDEC standard 4-layer board, with its underside paddle
soldered to a pad that is thermally connected to a PCB plane. θ
JA
values are approximations.
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
5.0
4.5
07037-003
AMBIENT TEMPERATURE (°C)
MAXIMUM POWER DISSIPATION (W)
0 20 40 60 80 10010 30 50 70 90–40
–20–30 –10
ADA4898-2
ADA4898-1
Figure 4. Maximum Power Dissipation vs. Ambient Temperature
ESD CAUTION
Rev. E | Page 5 of 20
ADA4898-1/ADA4898-2 Data Sheet
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
07037-046
NC
1
–IN
2
+IN
3
–V
S
4
PD
8
+V
S
7
V
OUT
6
NC
5
ADA4898-1
TOP VIEW
(Not to Scale)
NOTES
1. EXPOSED PAD CAN BE CONNECTED
TO THE NEGATIVE SUPPLY (−V
S
) OR
LEFT FLOATING.
Figure 5. Single 8-Lead SOIC_N_EP Pin Configuration
Table 5. Pin Function Descriptions
Pin No. Mnemonic Description
1 NC No Connect.
2 −IN Inverting Input.
3 +IN Noninverting Input.
4 −V
S
Negative Supply.
5 NC No Connect.
6 V
OUT
Output.
7 +V
S
Positive Supply.
8
PD
Power Down Not.
EP Exposed Pad. Can be connected to the negative supply (−V
S
) or can be left floating.
07037-051
V
OUT1
1
–IN1
2
+IN1
3
–V
S
4
+V
S
8
V
OUT2
7
–IN2
6
+IN2
5
ADA4898-2
TOP VIEW
(Not to Scale)
NOTES
1. EXPOSED PAD CAN BE CONNECTED
TO THE NEGATIVE SUPPLY (−V
S
) OR
LEFT FLOATING.
Figure 6. Dual 8-Lead SOIC_N_EP Pin Configuration
Table 6. Pin Function Descriptions
Pin No. Mnemonic Description
1 V
OUT1
Output 1.
2 −IN1 Inverting Input 1.
3
+IN1
Noninverting Input 1.
4 −V
S
Negative Supply.
5 +IN2 Noninverting Input 2.
6 −IN2 Inverting Input 2.
7 V
OUT2
Output 2.
8 +V
S
Positive Supply.
EP Exposed Pad. Can be connected to the negative supply (−V
S
) or can be left floating.
Rev. E | Page 6 of 20

ADA4898-2YRDZ-R7

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
High Speed Operational Amplifiers High VTG Low Noise Low Distort High Spd
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union