74HC_HCT1G14_Q100 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.
Product data sheet Rev. 2 — 27 December 2012 6 of 16
NXP Semiconductors
74HC1G14-Q100; 74HCT1G14-Q100
Inverting Schmitt trigger
[1] t
pd
is the same as t
PLH
and t
PHL
.
[2] C
PD
is used to determine the dynamic power dissipation P
D
(W).
P
D
=C
PD
V
CC
2
f
i
+ (C
L
V
CC
2
f
o
)where:
f
i
= input frequency in MHz; f
o
= output frequency in MHz
C
L
= output load capacitance in pF; V
CC
= supply voltage in Volts
(C
L
V
CC
2
f
o
) = sum of outputs
13. Waveforms
For type 74HCT1G14-Q100
t
pd
propagation delay A to Y; see Figure 5
[1]
V
CC
= 4.5 V; C
L
=50pF - 17 43 - 51 ns
V
CC
= 5.0 V; C
L
=15pF - 15 - - - ns
C
PD
power dissipation
capacitance
V
I
=GNDtoV
CC
1.5 V
[2]
-22- - -pF
Table 8. Dynamic characteristics
…continued
GND = 0 V; t
r
= t
f
6.0 ns; All typical values are measured at T
amb
=25
C. For test circuit see Figure 6
Symbol Parameter Conditions 40 C to +85 C 40 C to +125 C Unit
Min Typ Max Min Max
Measurement points are given in Tab le 9.
Fig 5. The input (A) to output (Y) propagation delays
mna033
A input
Y output
t
PHL
t
PLH
V
M
V
M
Table 9. Measurement points
Type number Input Output
V
I
V
M
V
M
74HC1G14-Q100 GND to V
CC
0.5 V
CC
0.5 V
CC
74HCT1G14-Q100 GND to 3.0 V 1.5 V 0.5 V
CC
74HC_HCT1G14_Q100 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.
Product data sheet Rev. 2 — 27 December 2012 7 of 16
NXP Semiconductors
74HC1G14-Q100; 74HCT1G14-Q100
Inverting Schmitt trigger
14. Transfer characteristics waveforms
Test data is given in Table 8. Definitions for test circuit:
C
L
= Load capacitance including jig and probe capacitance.
R
T
= Termination resistance should be equal to output impedance Z
o
of the pulse generator.
Fig 6. Load circuitry for switching times
V
CC
V
I
V
O
mna034
DUT
C
L
50 pF
R
T
PULSE
GENERATOR
Fig 7. Transfer characteristic Fig 8. The definitions of V
T+
, V
T
and V
H
; where V
T+
and V
T
are between limits of 20 % and 70 %
mna026
V
O
V
H
V
I
V
T
V
T+
mna027
V
O
V
I
V
H
V
T+
V
T
Fig 9. Typical 74HC1G14-Q100 transfer
characteristics; V
CC
=2.0V
Fig 10. Typical 74HC1G14-Q100 transfer
characteristics; V
CC
=4.5V
mna028
0 2.0
100
0
50
I
CC
(μA)
1.0
V
I
(V)
mna029
0 5.0
1.0
0.8
0.6
0.4
0.2
0
I
CC
(mA)
2.5
V
I
(V)
74HC_HCT1G14_Q100 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.
Product data sheet Rev. 2 — 27 December 2012 8 of 16
NXP Semiconductors
74HC1G14-Q100; 74HCT1G14-Q100
Inverting Schmitt trigger
15. Application information
The slow input rise and fall times cause additional power dissipation. The additional power
dissipation can be calculated using the following formula:
P
add
=f
i
(t
r
I
CC(AV)
+t
f
I
CC(AV)
) V
CC
Where:
P
add
= additional power dissipation (W)
f
i
= input frequency (MHz)
t
r
= rise time (ns); 10 % to 90 %
Fig 11. Typical 74HC1G14-Q100 transfer characteristics; V
CC
=6.0V
mna030
0 3.0 6.0
1.6
0
0.8
I
CC
(mA)
V
I
(V)
Fig 12. Typical 74HCT1G14-Q100 transfer
characteristics; V
CC
=4.5V
Fig 13. Typical 74HCT1G14-Q100 transfer
characteristics; V
CC
=5.5V
mna031
0 5.0
2.0
0
1.0
I
CC
(mA)
2.5
V
I
(V)
mna032
0
3.0
2.0
1.0
0
3.0 6.0
I
CC
(mA)
V
I
(V)

74HC1G14GW-Q100H

Mfr. #:
Manufacturer:
Nexperia
Description:
Inverters 74HC1G14GW-Q100/UMT5/REEL 7" Q
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union