NCV4275A
www.onsemi.com
10
Figure 24. Reset Timing
V
I
V
Q
V
D
V
RO
Reset
Delay Time
Reset
Reaction Time
Power−on−Reset Thermal
Shutdown
Voltage Dip
at Input
Undervoltage Secondary
Spike
Overload
at Output
< Reset Reaction Time
t
t
t
t
V
Q,rt
Upper Timing Threshold V
DU
Lower Timing Threshold V
DL
dV
D
dt
+
Reset Charge Current
C
D
NCV4275A
www.onsemi.com
11
Calculating Power Dissipation
in a Single Output Linear Regulator
The maximum power dissipation for a single output
regulator (Figure 25) is:
P
D(max)
+ [V
I(max)
* V
Q(min)
]I
Q(max)
(
1)
) V
I(max)
I
q
where
V
I(max)
is the maximum input
voltage,
V
Q(min)
is the minimum output
voltage,
I
Q(max)
is the maximum output
current for the application,
I
q
is the quiescent current the regulator consumes
at I
Q(max)
.
Once the value of P
D(max)
is known, the maximum
permissible value of R
JA
can be calculated:
R
JA
+
150° C *
T
A
P
D
(2)
The value of R
JA
can then be compared with those in the
package section of the data sheet. Those packages with
R
JA
s less than the calculated value in Equation 2 will keep
the die temperature below 150°C.
In some cases, none of the packages will be sufficient to
dissipate the heat generated by the IC, and an external
heatsink will be required.
SMART
REGULATOR®
Iq
Control
Features
I
Q
I
I
Figure 25. Single Output Regulator with Key
Performance Parameters Labeled
V
I
V
Q
}
Heatsinks
A heatsink effectively increases the surface area of the
package to improve the flow of heat away from the IC and
into the surrounding air.
Each material in the heat flow path between the IC and
the outside environment will have a thermal resistance.
Like series electrical resistances, these resistances are
summed to determine the value of R
JA
:
R
JA
+ R
JC
) R
CS
) R
SA
(3)
where
R
JC
is the junction−to−case thermal resistance,
R
CS
is the case−to−heatsink thermal resistance,
R
SA
is the heatsink−to−ambient thermal resistance.
R
JC
appears in the package section of the data sheet.
Like R
JA
, it too is a function of package type. R
CS
and
R
SA
are functions of the package type, heatsink and the
interface between them. These values appear in heatsink
data sheets of heatsink manufacturers.
Thermal, mounting, and heatsinking considerations are
discussed in the ON Semiconductor application note
AN1040/D.
Thermal Model
A discussion of thermal modeling is in the ON Semiconductor web site: http://www.onsemi.com/pub/collateral/BR1487−D.PDF.
Table 1. DPAK 5−Lead Thermal RC Network Models
Drain Copper Area (1 oz thick) 168 mm
2
736 mm
2
168 mm
2
736 mm
2
(SPICE Deck Format) Cauer Network Foster Network
168 mm
2
736 mm
2
Units Ta u Ta u Units
C_C1 Junction Gnd 1.00E−06 1.00E−06 W−s/C 1.36E−08 1.361E−08 sec
C_C2 node1 Gnd 1.00E−05 1.00E−05 W−s/C 7.41E−07 7.411E−07 sec
C_C3 node2 Gnd 6.00E−05 6.00E−05 W−s/C 1.04E−05 1.029E−05 sec
C_C4 node3 Gnd 1.00E−04 1.00E−04 W−s/C 3.91E−05 3.737E−05 sec
C_C5 node4 Gnd 4.36E−04 3.64E−04 W−s/C 1.80E−03 1.376E−03 sec
C_C6 node5 Gnd 6.77E−02 1.92E−02 W−s/C 3.77E−01 2.851E−02 sec
C_C7 node6 Gnd 1.51E−01 1.27E−01 W−s/C 3.79E+00 9.475E−01 sec
C_C8 node7 Gnd 4.80E−01 1.018 W−s/C 2.65E+01 1.173E+01 sec
C_C9 node8 Gnd 3.740 2.955 W−s/C 8.71E+01 8.59E+01 sec
NCV4275A
www.onsemi.com
12
(SPICE Deck Format) Foster NetworkCauer Network
C_C10 node9 Gnd 10.322 0.438 W−s/C sec
168 mm
2
736 mm
2
R’s R’s
R_R1 Junction node1 0.015 0.015 C/W 0.0123 0.0123 C/W
R_R2 node1 node2 0.08 0.08 C/W 0.0585 0.0585 C/W
R_R3 node2 node3 0.4 0.4 C/W 0.0304 0.0287 C/W
R_R4 node3 node4 0.2 0.2 C/W 0.3997 0.3772 C/W
R_R5 node4 node5 2.97519 2.6171 C/W 3.115 2.68 C/W
R_R6 node5 node6 8.2971 1.6778 C/W 3.571 1.38 C/W
R_R7 node6 node7 25.9805 7.4246 C/W 12.851 5.92 C/W
R_R8 node7 node8 46.5192 14.9320 C/W 35.471 7.39 C/W
R_R9 node8 node9 17.7808 19.2560 C/W 46.741 28.94 C/W
R_R10 node9 Gnd 0.1 0.1758 C/W C/W
NOTE: Bold face items represent the package without the external thermal system.
Junction
R
1
C
1
C
2
R
2
C
3
R
3
C
n
R
n
Time constants are not simple RC products. Amplitudes
of mathematical solution are not the resistance values.
Ambient
(thermal ground)
Figure 26. Grounded Capacitor Thermal Network (“Cauer” Ladder)
Junction
R
1
C
1
C
2
R
2
C
3
R
3
C
n
R
n
Each rung is exactly characterized by its RC−product
time constant; amplitudes are the resistances.
Ambient
(thermal ground)
Figure 27. Non−Grounded Capacitor Thermal Ladder (“Foster” Ladder)

NCV4275ADT50RKG

Mfr. #:
Manufacturer:
ON Semiconductor
Description:
LDO Voltage Regulators 450 mA LDO 5V
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union