13
0 1.0 2.0
V
O
– OUTPUT VOLTAGE – V
I
O
– OUTPUT CURRENT – mA
50
25
0
5.0 mA
T
A
= 25° C
V
CC
= 5 V
4.5 mA
4.0 mA
3.5 mA
3.0 mA
2.5 mA
2.0 mA
1.5 mA
1.0 mA
0.5 mA
I
F
– FORWARD CURRENT – mA
2000
1600
800
400
0.1 1.0
CTR – CURRENT TRANSFER RATIO – %
10
1200
0
V
CC
= 5 V
V
O
= 0.4 V
85°C
70°C
25°C
70°C
-40°C
I
F
– INPUT DIODE FORWARD CURRENT – mA
0.01
0.01 0.1 10
I
O
– OUTPUT CURRENT – mA
0.1
1.0
10
100
T
A
= 25° C
T
A
= 0° C
T
A
= 70° C
T
A
= 85° C
T
A
= -40° C
1
V
F
– FORWARD VOLTAGE – V
100
10
0.1
0.01
1.1 1.2 1.3 1.4
I
F
– FORWARD CURRENT – mA
1.61.5
1.0
0.001
1000
V
F
+
T
A
= 25°C
T
A
= 0°C
I
F
T
A
= 85°C
T
A
= 70°C
T
A
= -40°C
40
35
30
25
20
10
-60 -20
20 40
100
t
P
– PROPAGATION DELAY – µs
T
A
– TEMPERATURE – °C
5
60 80
0
-40
0
I
F
= 0.5 mA
R
L
= 4.7 k
1/f = 50 µs
15
t
PLH
t
PHL
24
21
18
15
12
6
-60 -20
20 40
100
t
P
– PROPAGATION DELAY – µs
T
A
– TEMPERATURE – °C
3
60 80
0
-40
0
I
F
= 1.6 mA
R
L
= 2.2 k
1/f = 50 µs
9
t
PLH
t
PHL
4
3
2
1
-60 -20
20 40
100
t
P
– PROPAGATION DELAY – µs
T
A
– TEMPERATURE – °C
60 80
0
-40
0
I
F
= 12 mA
R
L
= 270 k
1/f = 50 µs
t
PLH
t
PHL
1.6
1.5
1.4
1.3
-60 -20
20 40
100
V
F
– FORWARD VOLTAGE – V
T
A
– TEMPERATURE – °C
60 80
0
-40
1.2
I
F
= 1.6 mA
R
L
– LOAD RESISTANCE – k
100
0.1 1.0
TIME – µs
10
10
1
I
F
– ADJUSTED FOR V
OL
= 2 V
T
A
= 25° C
t
f
t
r
Figure 1. 6N138/6N139 DC transfer character-
istics
Figure 6. Propagation delay vs. temperatureFigure 5. Propagation delay vs. temperature
Figure 2. Current transfer ratio vs. forward
current 6N138/6N139
Figure 3. 6N138/6N139 output current vs. input
diode forward current
Figure 4. Input diode forward current vs.
forward voltage
Figure 7. Propagation delay vs. temperature Figure 8. Forward voltage vs. temperature Figure 9. Nonsaturated rise and fall times vs.
load resistance
V
O
PULSE
GEN.
Z = 50
t = 5 ns
O
r
I MONITOR
F
I
F
0.1 µF
L
R
C
L
= 15 pF*
R
M
0
t
PHL
t
PLH
O
V
I
F
OL
V
1.5 V 1.5 V
5 V
+5 V
7
1
2
3
4
5
6
8
10% DUTY CYCLE
I/f < 100 µs
(SATURATED
RESPONSE)
t
f
t
r
O
V
(NON-SATURATED
RESPONSE)
5 V
90%
10%
90%
10%
* INCLUDES PROBE AND
FIXTURE CAPACITANCE
V
O
I
F
L
R
A
B
PULSE GEN.
V
CM
+
V
FF
O
V
OL
V
O
V
0 V
10%
90% 90%
10%
SWITCH AT A: I = 0 mA
F
SWITCH AT B: I = 1.6 mA
F
CM
V
t
r
t
f
5 V
+5 V
7
1
2
3
4
5
6
8
R
CC
(SEE NOTE 6)
10 V
t
r
, t
f
= 16 ns
For product information and a complete list of distributors, please go to our website: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2015 Avago Technologies. All rights reserved. Obsoletes AV01-0543EN
AV02-1359EN - March 4, 2015
Figure 12. Switching test circuit
Figure 11. Thermal derating curve, dependence of safety limiting value
with case temperature per IEC/EN/DIN EN 60747-5-5
Figure 10. Logic low supply current vs. forward current
Figure 13. Test circuit for transient immunity and typical waveforms
0.8
0.6
0.4
0.2
0 4
8 10
16
I
CCL
– LOGIC LOW SUPPLY CURRENT – mA
I
F
– FORWARD CURRENT
12 14
6
2
0
V
CC
= 18 V
0.1
0.3
0.5
0.7
V
CC
= 5 V
OUTPUT POWER – P
S
, INPUT CURRENT – I
S
0
0
T
S
– CASE TEMPERATURE – °C
175
1000
50
400
12525 75 100 150
600
800
200
100
300
500
700
900
P
S
(mW)
I
S
(mA)
WIDEBODY

HCNW139-300E

Mfr. #:
Manufacturer:
Broadcom / Avago
Description:
High Speed Optocouplers 100kBd 1Ch 0.4mA
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union