37
32142DS–06/2013
ATUC64/128/256L3/4U
The flash programming time is now:
Fix/Workaround
None.
4. Power Manager
5. Clock Failure Detector (CFD) can be issued while turning off the CFD
While turning off the CFD, the CFD bit in the Status Register (SR) can be set. This will
change the main clock source to RCSYS.
Fix/Workaround
Solution 1: Enable CFD interrupt. If CFD interrupt is issues after turning off the CFD, switch
back to original main clock source.
Solution 2: Only turn off the CFD while running the main clock on RCSYS.
6. Sleepwalking in idle and frozen sleep mode will mask all other PB clocks
If the CPU is in idle or frozen sleep mode and a module is in a state that triggers sleep walk-
ing, all PB clocks will be masked except the PB clock to the sleepwalking module.
Fix/Workaround
Mask all clock requests in the PM.PPCR register before going into idle or frozen mode.
2. Unused PB clocks are running
Three unused PBA clocks are enabled by default and will cause increased active power
consumption.
Fix/Workaround
Disable the clocks by writing zeroes to bits [27:25] in the PBA clock mask register.
6.3.3 SCIF
1. The RC32K output on PA20 is not always permanently disabled
The RC32K output on PA20 may sometimes re-appear.
Fix/Workaround
Before using RC32K for other purposes, the following procedure has to be followed in order
to properly disable it:
- Run the CPU on RCSYS
- Disable the output to PA20 by writing a zero to PM.PPCR.RC32OUT
- Enable RC32K by writing a one to SCIF.RC32KCR.EN, and wait for this bit to be read as
one
- Disable RC32K by writing a zero to SCIF.RC32KCR.EN, and wait for this bit to be read as
zero.
2. PLL lock might not clear after disable
Table 6-1. Flash Characteristics
Symbol Parameter Conditions Min Typ Max Unit
T
FPP
Page programming time
f
CLK_HSB
= 50MHz
7.5
ms
T
FPE
Page erase time 7.5
T
FFP
Fuse programming time 1
T
FEA
Full chip erase time (EA) 9
T
FCE
JTAG chip erase time
(CHIP_ERASE)
f
CLK_HSB
= 115kHz 250
38
32142DS–06/2013
ATUC64/128/256L3/4U
Under certain circumstances, the lock signal from the Phase Locked Loop (PLL) oscillator
may not go back to zero after the PLL oscillator has been disabled. This can cause the prop-
agation of clock signals with the wrong frequency to parts of the system that use the PLL
clock.
Fix/Workaround
PLL must be turned off before entering STOP, DEEPSTOP or STATIC sleep modes. If PLL
has been turned off, a delay of 30us must be observed after the PLL has been enabled
again before the SCIF.PLL0LOCK bit can be used as a valid indication that the PLL is
locked.
3. PLLCOUNT value larger than zero can cause PLLEN glitch
Initializing the PLLCOUNT with a value greater than zero creates a glitch on the PLLEN sig-
nal during asynchronous wake up.
Fix/Workaround
The lock-masking mechanism for the PLL should not be used.
The PLLCOUNT field of the PLL Control Register should always be written to zero.
4. RCSYS is not calibrated
The RCSYS is not calibrated and will run faster than 115.2kHz. Frequencies around 150kHz
can be expected.
Fix/Workaround
If a known clock source is available the RCSYS can be runtime calibrated by using the fre-
quency meter (FREQM) and tuning the RCSYS by writing to the RCCR register in SCIF.
5. Writing 0x5A5A5A5A to the SCIF memory range will enable the SCIF UNLOCK feature
The SCIF UNLOCK feature will be enabled if the value 0x5A5A5A5A is written to any loca-
tion in the SCIF memory range.
Fix/Workaround
None.
6.3.4 WDT
1. Clearing the Watchdog Timer (WDT) counter in second half of timeout period will
issue a Watchdog reset
If the WDT counter is cleared in the second half of the timeout period, the WDT will immedi-
ately issue a Watchdog reset.
Fix/Workaround
Use twice as long timeout period as needed and clear the WDT counter within the first half
of the timeout period. If the WDT counter is cleared after the first half of the timeout period,
you will get a Watchdog reset immediately. If the WDT counter is not cleared at all, the time
before the reset will be twice as long as needed.
2. WDT Control Register does not have synchronization feedback
When writing to the Timeout Prescale Select (PSEL), Time Ban Prescale Select (TBAN),
Enable (EN), or WDT Mode (MODE) fieldss of the WDT Control Register (CTRL), a synchro-
nizer is started to propagate the values to the WDT clcok domain. This synchronization
takes a finite amount of time, but only the status of the synchronization of the EN bit is
reflected back to the user. Writing to the synchronized fields during synchronization can lead
to undefined behavior.
Fix/Workaround
-When writing to the affected fields, the user must ensure a wait corresponding to 2 clock
cycles of both the WDT peripheral bus clock and the selected WDT clock source.
-When doing writes that changes the EN bit, the EN bit can be read back until it reflects the
written value.
39
32142DS–06/2013
ATUC64/128/256L3/4U
6.3.5 GPIO
1. Clearing Interrupt flags can mask other interrupts
When clearing interrupt flags in a GPIO port, interrupts on other pins of that port, happening
in the same clock cycle will not be registered.
Fix/Workaround
Read the PVR register of the port before and after clearing the interrupt to see if any pin
change has happened while clearing the interrupt. If any change occurred in the PVR
between the reads, they must be treated as an interrupt.
6.3.6 SPI
1. SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0
When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI
module will not start a data transfer.
Fix/Workaround
Disable mode fault detection by writing a one to MR.MODFDIS.
2. Disabling SPI has no effect on the SR.TDRE bit
Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered
when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is
disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer
is empty, and this data will be lost.
Fix/Workaround
Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the
SPI and PDCA.
3. SPI disable does not work in SLAVE mode
SPI disable does not work in SLAVE mode.
Fix/Workaround
Read the last received data, then perform a software reset by writing a one to the Software
Reset bit in the Control Register (CR.SWRST).
4. SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and
NCPHA=0
When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one
(CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0,
then an additional pulse will be generated on SCK.
Fix/Workaround
When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1
if CSRn.CPOL=1 and CSRn.NCPHA=0.
5. SPI mode fault detection enable causes incorrect behavior
When mode fault detection is enabled (MR.MODFDIS==0), the SPI module may not operate
properly.
Fix/Workaround
Always disable mode fault detection before using the SPI by writing a one to MR.MODFDIS.
6. SPI RDR.PCS is not correct
The PCS (Peripheral Chip Select) field in the SPI RDR (Receive Data Register) does not
correctly indicate the value on the NPCS pins at the end of a transfer.
Fix/Workaround
Do not use the PCS field of the SPI RDR.

ATUC256L4U-AUT

Mfr. #:
Manufacturer:
Microchip Technology / Atmel
Description:
32-bit Microcontrollers - MCU UC3L-256KB Fl 48QFP 85C Grn
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet