Application note for the different possible X1 / X2 positions
In series with the powerline
(i.e. capacitive power supply)
Typical Applications:
Power meters
ECUs for white goods and household
appliances
Different sensor applications
Severe ambient conditions
In parallel with the powerline
Typical Applications:
Standard X2 are used parallel over the mains for
reducing electromagnetic interferences coming
from the grid. For such purposes they must meet
the applicable EMC directives and standards.
Basic circuit Basic circuit
Required features
High capacitance stability over the lifetime
Narrow tolerances for a controlled current
supply
Required features
Standard safety approvals
(ENEC, UL, CSA, CQC)
High pulse load capability
Withstand surge voltages
Recommended EPCOS product series
B3293* (305 V AC) heavy duty with
EN approval for X2 (UL Q1/2010)
B3265* MKP series
standard MKP capacitor without safety
approvals
B3267*L MKP series
standard MKP capacitor without safety
approvals
B3292*H/J (305 V AC), severe ambient
condition, approved as X2
Recommended EPCOS product series
B3292*C/D (305 V AC)
standard series, approved as X2
B3291* (330 V AC), approved as X1
B3291* (530 V AC), approved as X1
B3292*H/J (305 V AC), severe ambient
condition, approved as X2
B32911 ... B32918
X1 / 530 V AC
Page 16 of 24Please read Cautions and warnings and
Important notes at the end of this document.
Cautions and warnings
Do not exceed the upper category temperature (UCT).
Do not apply any mechanical stress to the capacitor terminals.
Avoid any compressive, tensile or flexural stress.
Do not move the capacitor after it has been soldered to the PC board.
Do not pick up the PC board by the soldered capacitor.
Do not place the capacitor on a PC board whose PTH hole spacing differs from the specified
lead spacing.
Do not exceed the specified time or temperature limits during soldering.
Avoid external energy inputs, such as fire or electricity.
Avoid overload of the capacitors.
The table below summarizes the safety instructions that must always be observed. A detailed de-
scription can be found in the relevant sections of the chapters "General technical information" and
"Mounting guidelines".
Topic Safety information Reference chapter
"General technical
information"
Storage conditions Make sure that capacitors are stored within the
specified range of time, temperature and humidity
conditions.
4.5
"Storage conditions"
Flammability Avoid external energy, such as fire or electricity
(passive flammability), avoid overload of the
capacitors (active flammability) and consider the
flammability of materials.
5.3
"Flammability"
Resistance to
vibration
Do not exceed the tested ability to withstand
vibration. The capacitors are tested to
IEC 60068-2-6.
EPCOS offers film capacitors specially designed
for operation under more severe vibration regimes
such as those found in automotive applications.
Consult our catalog "Film Capacitors for
Automotive Electronics".
5.2
"Resistance to vibration"
B32911 ... B32918
X1 / 530 V AC
Page 17 of 24Please read Cautions and warnings and
Important notes at the end of this document.
Topic
Safety information Reference chapter
"Mounting guidelines"
Soldering Do not exceed the specified time or temperature
limits during soldering.
1 "Soldering"
Cleaning Use only suitable solvents for cleaning capacitors. 2 "Cleaning"
Embedding of
capacitors in
finished assemblies
When embedding finished circuit assemblies in
plastic resins, chemical and thermal influences
must be taken into account.
Caution: Consult us first, if you also wish to
embed other uncoated component types!
3 "Embedding of
capacitors in finished
assemblies"
Design of EMI Capacitors
EPCOS EMI capacitors use polypropylene (PP) film metalized with a thin layer of Zinc (Zn).
The following key points have made this design suitable to IEC/UL testing, holding a minimum
size.
Overvoltage AC capability with very high temperature Endurance test of IEC60384-14
(3
rd
edition, 2005-07) / UL60384-14 (1st edition, 2009-04) must be performed at 1.25 × V
R
at
maximum temperature, during 1000 hours, with a capacitance drift less than 10%.
Higher breakdown voltage withstanding if compared to other film metallizations, like Aluminum.
IEC60384-14 (3
rd
edition, 2005-07) / UL60384-14 (1st edition, 2009-04) establishes high
voltage tests performed at 4.3 × V
R
1 minute, impulse testing at 2500 V for C= 1 µF and active
flammability tests.
Damp heat steady state: 40 °C/ 93% RH / 56 days. (without voltage or current load)
Effect of humidity on capacitance stability
Long contact of a film capacitor with humidity can produce irreversible effects. Direct contact with
liquid water or excess exposure to high ambient humidity or dew will eventually remove the film
metallization and thus destroy the capacitor. Plastic boxed capacitors must be properly tested in
the final application at the worst expected conditions of temperature and humidity in order to
check if any parameter drift may provoke a circuit malfunction.
In case of penetration of humidity through the film, the layer of Zinc can be degraded, specially
under AC operation (change of polarity), accelerated by the temperature, provoking an increment
of the serial resistance of the electrode and eventually a reduction of the capacitance value.
For DC operation, the parameter drift is much less.
Plastic boxes and resins can not protect 100% against humidity. Metal enclosures, resin potting or
coatings or similar measures by customers in their applications will offer additional protection
against humidity penetration.
B32911 ... B32918
X1 / 530 V AC
Page 18 of 24Please read Cautions and warnings and
Important notes at the end of this document.

B32916A5224M

Mfr. #:
Manufacturer:
EPCOS / TDK
Description:
Film Capacitors 0.22uF 530Vac X1 MKP 20% LS=37.5mm
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union