IDT1337
REA LTIME CLOCK WITH SERIAL INTERFACE RTC
IDT™
REAL-TIME CLOCK WITH I
2
C SERIAL INTERFACE 7
IDT1337 REV H 120208
Table 2. Alarm Mask Bits
Special-Purpose Registers
The IDT1337 has two additional registers (control and status) that control the RTC, alarms, and square-wave output.
Control Register (0Eh)
Bit 7: Enable Oscillator (EOSC). This active-low bit when set to logic 0 starts the oscillator. When this bit is set to
a logic 1, the oscillator is stopped. This bit is enabled (logic 0) when power is first applied.
Bits 4 and 3: Rate Select (RS2 and RS1). These bits control the frequency of the square-wave output when the
square wave has been enabled. Table 3 shows the square-wave frequencies that can be selected with the RS bits.
These bits are both set to logic 1 (32 kHz) when power is first applied.
Table 3. SQW/INT Output
DY/DT Alarm 1 Register Mask Bits (Bit 7) Alarm Rate
A1M4 A1M3 A1M2 A1M1
X1111Alarm once per second.
X1110Alarm when seconds match.
X1100Alarm when minutes and seconds match.
X1000Alarm when hours, minutes, and seconds match.
00000Alarm when date, hours, minutes, and seconds match.
10000Alarm when day, hours, minutes, and seconds match.
DY/DT Alarm 2 Register Mask Bits (Bit 7) Alarm Rate
A2M4 A2M3 A2M2
X 1 1 1 Alarm once per minute (00 seconds of every minute).
X 1 1 0 Alarm when minutes match.
X 1 0 0 Alarm when hours and minutes match.
0 0 0 0 Alarm when date, hours, and minutes match.
1 0 0 0 Alarm when day, hours, and minutes match.
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
EOSC 0 0 RS2 RS1 INTCN A2IE A1IE
INTCN RS2 RS1 SQW/INTB Output A2IE
000 1 Hz X
0 0 1 4.096 kHz X
0 1 0 8.192 kHz X
0 1 1 32.768 kHz X
1XX A2F
1
IDT1337
REAL-TIME CLOCK WITH I
2
C SERIAL INTERFACE RTC
IDT™
REAL-TIME CLOCK WITH I
2
C SERIAL INTERFACE 8
IDT1337 REV H 120208
Bit 2: Interrupt Control (INTCN). This bit controls the relationship between the two alarms and the interrupt output
pins. When the INTCN bit is set to logic 1, a match between the timekeeping registers and the alarm 1 registers
activate the INTA
pin (provided that the alarm is enabled) and a match between the timekeeping registers and the
alarm 2 registers activates the SQW/INTB
pin (provided that the alarm is enabled). When the INTCN bit is set to
logic 0, a square wave is output on the SQW/INTB
pin. This bit is set to logic 0 when power is first applied.
Bit 1: Alarm 2 Interrupt Enable (A2IE). When set to a logic 1, this bit permits the Alarm 2 Flag (A2F) bit in the
status register to assert INTA
(when INTCN = 0) or to assert SQW/INTB (when INTCN = 1). When the A2IE bit is
set to logic 0, the A2F bit does not initiate an interrupt signal. The A2IE bit is disabled (logic 0) when power is first
applied.
Bit 0: Alarm 1 Interrupt Enable (A1IE). When set to logic 1, this bit permits the Alarm 1 Flag (A1F) bit in the status
register to assert INTA
. When the A1IE bit is set to logic 0, the A1F bit does not initiate the INTA signal. The A1IE
bit is disabled (logic 0) when power is first applied.
Status Register (0Fh)
Bit 7: Oscillator Stop Flag (OSF). A logic 1 in this bit indicates that the oscillator either is stopped or was stopped
for some period of time and may be used to judge the validity of the clock and calendar data. This bit is is set to logic
1 anytime the oscillator stops. The following are examples of conditions that can cause the OSF bit to be set:
1) The first time power is applied.
2) The voltage present on VCC is insufficient to support oscillation.
3) The EOSC
bit is turned off.
4) External influences on the crystal (e.g., noise, leakage, etc.).
This bit remains at logic 1 until written to logic 0. This bit can only be written to a logic 0.
Bit 1: Alarm 2 Flag (A2F). A logic 1 in the alarm 2 flag bit indicates that the time matched the alarm 2 registers.
This flag can be used to generate an interrupt on either INTA
or SQW/INTB depending on the status of the INTCN
bit in the control register. If the INTCN bit is set to logic 0 and A2F is at logic 1 (and A2IE bit is also logic 1), the INTA
pin goes low. If the INTCN bit is set to logic 1 and A2F is logic 1 (and A2IE bit is also logic 1), the SQW/INTB
pin
goes low. A2F is cleared when written to logic 0. This bit can only be written to logic 0. Attempting to write to logic 1
leaves the value unchanged.
Bit 0: Alarm 1 Flag (A1F). A logic 1 in the Alarm 1 Flag bit indicates that the time matched the alarm 1 registers. If
the A1IE bit is also a logic 1, the INTA
pin goes low. A1F is cleared when written to logic 0. This bit can only be
written to logic 0. Attempting to write to logic 1 leaves the value unchanged.
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
OSF00000A2FA1F
IDT1337
REA LTIME CLOCK WITH SERIAL INTERFACE RTC
IDT™
REAL-TIME CLOCK WITH I
2
C SERIAL INTERFACE 9
IDT1337 REV H 120208
I
2
C Serial Data Bus
The IDT1337 supports the I
2
C bus protocol. A device that
sends data onto the bus is defined as a transmitter and a
device receiving data as a receiver. The device that controls
the message is called a master. The devices that are
controlled by the master are referred to as slaves. A master
device that generates the serial clock (SCL), controls the
bus access, and generates the START and STOP conditions
must control the bus. The IDT1337 operates as a slave on
the I
2
C bus. Within the bus specifications, a standard mode
(100 kHz maximum clock rate) and a fast mode (400 kHz
maximum clock rate) are defined. The IDT1337 works in
both modes. Connections to the bus are made via the
open-drain I/O lines SDA and SCL.
The following bus protocol has been defined (see the “Data
Transfer on I
2
C Serial Bus” figure):
Data transfer may be initiated only when the bus is not
busy.
During data transfer, the data line must remain stable
whenever the clock line is HIGH. Changes in the data line
while the clock line is HIGH are interpreted as control
signals.
Accordingly, the following bus conditions have been defined:
Bus not busy: Both data and clock lines remain HIGH.
Start data transfer: A change in the state of the data line,
from HIGH to LOW, while the clock is HIGH, defines a
START condition.
Stop data transfer: A change in the state of the data line,
from LOW to HIGH, while the clock line is HIGH, defines the
STOP condition.
Data valid: The state of the data line represents valid data
when, after a START condition, the data line is stable for the
duration of the HIGH period of the clock signal. The data on
the line must be changed during the LOW period of the clock
signal. There is one clock pulse per bit of data.
Each data transfer is initiated with a START condition and
terminated with a STOP condition. The number of data
bytes transferred between START and STOP conditions are
not limited, and are determined by the master device. The
information is transferred byte-wise and each receiver
acknowledges with a ninth bit.
Acknowledge: Each receiving device, when addressed, is
obliged to generate an acknowledge after the reception of
each byte. The master device must generate an extra clock
pulse that is associated with this acknowledge bit.
A device that acknowledges must pull down the SDA line
during the acknowledge clock pulse in such a way that the
SDA line is stable LOW during the HIGH period of the
acknowledge related clock pulse. Of course, setup and hold
times must be taken into account. A master must signal an
end of data to the slave by not generating an acknowledge
bit on the last byte that has been clocked out of the slave. In
this case, the slave must leave the data line HIGH to enable
the master to generate the STOP condition.

1337DVGI

Mfr. #:
Manufacturer:
Description:
IC RTC CLK/CALENDAR I2C 8-MSOP
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet