IRF7749L2TR1PBF

4 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback May 6, 2014
IRF7749L2PbF
Fig 5. Typical Output Characteristics
Fig 4. Typical Output Characteristics
Fig 6. Typical Transfer Characteristics
Fig 7. Normalized On-Resistance vs. Temperature
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
Fig 9. Typical Total Gate Charge vs
Gate-to-Source Voltage
0.1 1 10 100
V
DS
, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
I
D
,
D
r
a
i
n
-
t
o
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
60μs PULSE WIDTH
Tj = 25°C
3.8V
VGS
TOP 15V
10V
7.0V
5.0V
4.5V
4.3V
4.0V
BOTTOM 3.8V
0.1 1 10 100
V
DS
, Drain-to-Source Voltage (V)
10
100
1000
I
D
,
D
r
a
i
n
-
t
o
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
60μs PULSE WIDTH
Tj = 175°C
3.8V
VGS
TOP 15V
10V
7.0V
5.0V
4.5V
4.3V
4.0V
BOTTOM 3.8V
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
V
GS
, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
I
D
,
D
r
a
i
n
-
t
o
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
V
DS
= 25V
60μs PULSE WIDTH
T
J
= 175°C
T
J
= 25°C
T
J
= -40°C
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
T
J
, Junction Temperature (°C)
0.5
1.0
1.5
2.0
R
D
S
(
o
n
)
,
D
r
a
i
n
-
t
o
-
S
o
u
r
c
e
O
n
R
e
s
i
s
t
a
n
c
e
(
N
o
r
m
a
l
i
z
e
d
)
I
D
= 120A
V
GS
= 10V
1 10 100
V
DS
, Drain-to-Source Voltage (V)
100
1000
10000
100000
C
,
C
a
p
a
c
i
t
a
n
c
e
(
p
F
)
Coss
Crss
Ciss
V
GS
= 0V, f = 1 MHZ
C
iss
= C
gs
+ C
gd
, C
ds
SHORTED
C
rss
= C
gd
C
oss
= C
ds
+ C
gd
0 40 80 120 160 200 240 280
Q
G
Total Gate Charge (nC)
0
2
4
6
8
10
12
14
V
G
S
,
G
a
t
e
-
t
o
-
S
o
u
r
c
e
V
o
l
t
a
g
e
(
V
)
V
DS
= 48V
V
DS
= 30V
V
DS
= 12V
I
D
= 120A
5 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback May 6, 2014
IRF7749L2PbF
Fig 13. Typical Threshold Voltage vs.
Junction Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 10. Typical Source-Drain Diode Forward Voltage
Fig11. Maximum Safe Operating Area
Fig 14. Maximum Avalanche Energy Vs. Drain Current
0.2 0.4 0.6 0.8 1.0 1.2 1.4
V
SD
, Source-to-Drain Voltage (V)
1
10
100
1000
I
S
D
,
R
e
v
e
r
s
e
D
r
a
i
n
C
u
r
r
e
n
t
(
A
)
V
GS
= 0V
T
J
= 175°C
T
J
= 25°C
T
J
= -40°C
25 50 75 100 125 150 175
T
C
, CaseTemperature (°C)
0
40
80
120
160
200
I
D
,
D
r
a
i
n
C
u
r
r
e
n
t
(
A
)
-75 -50 -25 0 25 50 75 100 125 150 175
T
J
, Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
V
G
S
(
t
h
)
G
a
t
e
t
h
r
e
s
h
o
l
d
V
o
l
t
a
g
e
(
V
)
I
D
= 1.0A
I
D
= 1.0mA
I
D
= 250μA
25 50 75 100 125 150 175
Starting T
J
, Junction Temperature (°C)
0
200
400
600
800
1000
1200
E
A
S
,
S
i
n
g
l
e
P
u
l
s
e
A
v
a
l
a
n
c
h
e
E
n
e
r
g
y
(
m
J
)
I
D
TOP 20A
31A
BOTTOM 120A
0 1 10 100
V
DS
, Drain-toSource Voltage (V)
0.1
1
10
100
1000
10000
I
D
,
D
r
a
i
n
-
t
o
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R
DS
(on)
100μsec
DC
6 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback May 6, 2014
IRF7749L2PbF
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET
®
Power MOSFETs
Fig 15. Typical Avalanche Current Vs.Pulsewidth
Fig 16. Maximum Avalanche Energy Vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T
jmax
. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asT
jmax
is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 19a, 19b.
4. P
D (ave)
= Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. I
av
= Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed
T
jmax
(assumed as 25°C in Figure 15, 16).
t
av =
Average time in avalanche.
D = Duty cycle in avalanche = t
av
·f
Z
thJC
(D, t
av
) = Transient thermal resistance, see figure 11)
P
D (ave)
= 1/2 ( 1.3·BV·I
av
) = DT/ Z
thJC
I
av
=
2DT/ [1.3·BV·Z
th
]
E
AS (AR)
= P
D (ave)
·t
a
P.W.
Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D =
P. W .
Period
* V
GS
= 5V for Logic Level Devices
*
Inductor Current
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
di/dt controlled by R
G
Driver same type as D.U.T.
I
SD
controlled by Duty Factor "D"
D.U.T. - Device Under Test
+
-
+
+
+
-
-
-
R
G
V
DD
D.U.T
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
0.1
1
10
100
1000
A
v
a
l
a
n
c
h
e
C
u
r
r
e
n
t
(
A
)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming
ΔΤ
j = 25°C and
Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming
Δ
Tj = 150°C and
Tstart =25°C (Single Pulse)
25 50 75 100 125 150 175
Starting T
J
, Junction Temperature (°C)
0
40
80
120
160
200
240
280
E
A
R
,
A
v
a
l
a
n
c
h
e
E
n
e
r
g
y
(
m
J
)
TOP Single Pulse
BOTTOM 1% Duty Cycle
I
D
= 120A

IRF7749L2TR1PBF

Mfr. #:
Manufacturer:
Infineon / IR
Description:
MOSFET 60V 200A 1.5mOhm 220nC Qg
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet