IRF6603
www.irf.com 7
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET
®
Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W.
Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D =
P. W .
Period
* V
GS
= 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
R
G
V
DD
dv/dt controlled by R
G
Driver same type as D.U.T.
I
SD
controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
Vds
Vgs
Id
Vgs(th)
Qgs1
Qgs2 Qgd Qgodr
Fig 16. Gate Charge Waveform
IRF6603
8 www.irf.com
Control FET
Special attention has been given to the power losses
in the switching elements of the circuit - Q1 and Q2.
Power losses in the high side switch Q1, also called
the Control FET, are impacted by the R
ds(on)
of the
MOSFET, but these conduction losses are only about
one half of the total losses.
Power losses in the control switch Q1 are given
by;
P
loss
= P
conduction
+ P
switching
+ P
drive
+ P
output
This can be expanded and approximated by;
P
loss
= I
rms
2
× R
ds(on )
()
+ I ×
Q
gd
i
g
× V
in
× f
+ I ×
Q
gs2
i
g
× V
in
× f
+ Q
g
× V
g
× f
()
+
Q
oss
2
×V
in
× f
This simplified loss equation includes the terms Q
gs2
and Q
oss
which are new to Power MOSFET data sheets.
Q
gs2
is a sub element of traditional gate-source
charge that is included in all MOSFET data sheets.
The importance of splitting this gate-source charge
into two sub elements, Q
gs1
and Q
gs2
, can be seen from
Fig 16.
Q
gs2
indicates the charge that must be supplied by
the gate driver between the time that the threshold
voltage has been reached and the time the drain cur-
rent rises to I
dmax
at which time the drain voltage be-
gins to change. Minimizing Q
gs2
is a critical factor in
reducing switching losses in Q1.
Q
oss
is the charge that must be supplied to the out-
put capacitance of the MOSFET during every switch-
ing cycle. Figure A shows how Q
oss
is formed by the
parallel combination of the voltage dependant (non-
linear) capacitances C
ds
and C
dg
when multiplied by
the power supply input buss voltage.
Synchronous FET
The power loss equation for Q2 is approximated
by;
P
loss
= P
conduction
+ P
drive
+ P
output
*
P
loss
= I
rms
2
× R
ds(on)()
+ Q
g
× V
g
× f
()
+
Q
oss
2
×V
in
× f
+ Q
rr
× V
in
× f
(
)
*dissipated primarily in Q1.
For the synchronous MOSFET Q2, R
ds(on)
is an im-
portant characteristic; however, once again the im-
portance of gate charge must not be overlooked since
it impacts three critical areas. Under light load the
MOSFET must still be turned on and off by the con-
trol IC so the gate drive losses become much more
significant. Secondly, the output charge Q
oss
and re-
verse recovery charge Q
rr
both generate losses that
are transfered to Q1 and increase the dissipation in
that device. Thirdly, gate charge will impact the
MOSFETs’ susceptibility to Cdv/dt turn on.
The drain of Q2 is connected to the switching node
of the converter and therefore sees transitions be-
tween ground and V
in
. As Q1 turns on and off there is
a rate of change of drain voltage dV/dt which is ca-
pacitively coupled to the gate of Q2 and can induce
a voltage spike on the gate that is sufficient to turn
the MOSFET on, resulting in shoot-through current .
The ratio of Q
gd
/Q
gs1
must be minimized to reduce the
potential for Cdv/dt turn on.
Power MOSFET Selection for Non-Isolated DC/DC Converters
Figure A: Q
oss
Characteristic
IRF6603
www.irf.com 9
DirectFET Outline Dimension, MT Outline
(Medium Size Can, T-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
MAX
0.250
0.199
0.156
0.018
0.032
0.036
0.072
0.040
0.026
0.039
0.104
0.028
0.003
0.007
MIN
6.25
4.80
3.85
0.35
0.78
0.88
1.78
0.98
0.63
0.88
2.46
0.59
0.03
0.08
MAX
6.35
5.05
3.95
0.45
0.82
0.92
1.82
1.02
0.67
1.01
2.63
0.70
0.08
0.17
MIN
0.246
0.189
0.152
0.014
0.031
0.035
0.070
0.039
0.025
0.035
0.097
0.023
0.001
0.003
CODE
A
B
C
D
E
F
G
H
J
K
L
M
N
P
DIMENSIONS
METRIC
IMPERIAL

IRF6603TR1

Mfr. #:
Manufacturer:
Infineon Technologies
Description:
MOSFET N-CH 30V 27A DIRECTFET
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet