MAX4460/MAX4461/MAX4462
SOT23, 3V/5V, Single-Supply, Rail-to-Rail
Instrumentation Amplifiers
______________________________________________________________________________________ 13
Input Common-Mode and Output
Reference Ranges
MAX4460/MAX4461/MAX4462 have an input common-
mode range of 100mV below the negative supply to
1.7V below the positive supply.
The output reference voltage of MAX4462U/T/H is set by
REF and ranges from 100mV above the negative supply
to 1.7V below the positive supply. For maximum voltage
swing in a bipolar operation, connect REF to V
DD
/2.
The output voltages of the MAX4460 and MAX4461U/
T/H are referenced to ground. Unlike the traditional
three-op-amp configuration of common instrumentation
amplifiers, the MAX4460/MAX4461/MAX4462 have
ground-sensing capability (or to V
SS
in dual-supply
configuration) in addition to the extremely high input
impedances of MOS input differential pairs.
Input Differential Signal Range
The MAX4460/MAX4461/MAX4462 feature a proprietary
input structure optimized for small differential signals.
The unipolar output of the MAX4460/MAX4461 is nomi-
nally zero-for-zero differential input. However, these
devices are specified for inputs of 50mV to 100mV for
the unity-gain devices, 20mV to 100mV for gain of 10
devices, and 2mV to 48mV for gain of 100 devices. The
MAX4460/MAX4461 can be used with differential inputs
approaching zero, albeit with reduced accuracy.
The bipolar output of the MAX4462 allows bipolar input
ranges. The output voltage is equal to the reference
voltage for zero differential input. The MAX4462 is
specified for inputs of ±100mV for the unity gain and
gain of 10 devices, and ±20mV for gain of 100 devices.
The gain of 100 devices (MAX4462H) can be operated
beyond 20mV signal provided the reference is chosen
for unsymmetrical swing.
Output Swing
The MAX4460/MAX4461/MAX4462 are designed to
have rail-to-rail output voltage swings. However,
depending on the selected gain and supply voltage
(and output reference level of the MAX4462), the rail-to-
rail output swing is not required.
For example, consider the MAX4461U, a unity-gain
device with its ground pin as the output reference level.
The input voltage range is 0 to 100mV (50mV minimum
to meet accuracy specifications). Because the device
is unity gain and the output reference level is ground,
the output only sees excursions from ground to 100mV.
Devices with higher gain and with bipolar output such
as the MAX4462, can be configured to swing to higher
levels. In these cases, as the output approaches either
supply, accuracy may degrade, especially under heavy
output loading.
Shutdown Mode
The MAX4461U/T/H features a low-power shutdown
mode. When the SHDN pin is pulled low, the internal
transconductance and amplifier blocks are switched off
and supply current drops to typically less than 0.1µA
(Figure 1).
In shutdown, the amplifier output is high impedance.
The output transistors are turned off, but the feedback
resistor network remains connected. If the external load
is referenced to GND, the output drops to approximate-
ly GND in shutdown. The output impedance in shut-
down is typically greater than 100k. Drive SHDN high
or connect to V
CC
for normal operation.
A User Guide to Instrumentation
Amplifier Accuracy Specifications
As with any other electronic component, a complete
understanding of instrumentation amplifier specifica-
tions is essential to successfully employ these devices
in their application circuits. Most of the specifications
for these differential closed-loop gain blocks are similar
to the well-known specifications of operational ampli-
fiers. However, there are a few accuracy specifications
that could be confusing to first-time users. Therefore,
some explanations and examples may be helpful.
Accuracy specifications are measurements of close-
ness of an actual output response to its ideal
expected value. There are three main specifications
in this category:
Gain error
Gain nonlinearity error
Offset error
In order to understand these terms, we must look at the
transfer function of an ideal instrumentation amplifier. As
expected, this must be a straight line passing through
origin with a slope equal to the ideal gain (Figure 3). If
the ideal gain is equal to 10 and the extreme applied
input voltages are -100mV and +100mV, then the value
of the output voltages are -1V and +1V, respectively.
Note that the line passes through the origin and therefore
a zero input voltage gives a zero output response.
The transfer function of a real instrumentation amplifier
is quite different from the ideal line pictured in Figure 3.
Rather, it is a curve such as the one indicated as the
typical curve in Figure 4, connecting end points A and B.
MAX4460/MAX4461/MAX4462
SOT23, 3V/5V, Single-Supply, Rail-to-Rail
Instrumentation Amplifiers
14 ______________________________________________________________________________________
Looking at this curve, one can immediately identify
three types of errors.
First, there is an obvious nonlinearity (curvature) when
this transfer function is compared to a straight line.
More deviation is measured as greater nonlinearity
error. This is explained in more detail below.
Second, even if there was no nonlinearity error, i.e., the
actual curve in Figure 4 was a straight line connecting
end points A and B, there exists an obvious slope devi-
ation from that of an ideal gain slope (drawn as the
“ideal” line in Figure 4). This rotational error (delta
slope) is a measure of how different the actual gain
(G
A
) is from the expected ideal gain (G
I)
and is called
gain error (GE) (see the equation below).
Third, even if the actual curve between points A and B
was a straight line (no nonlinearity error) and had the
same slope as the ideal gain line (no gain error), there
is still another error called the end-point offset error (OE
on vertical axis), since the line is not passing through
the origin.
Figure 5 is the same as Figure 4, but the ideal line (CD)
is shifted up to pass through point E (the Y intercept of
end-points line AB).
This is done to better visualize the rotational error (GE),
which is the difference between the slopes of end
points line AB and the shifted ideal line CD.
Mathematically:
GE (%) = 100 x (G
A
- G
I
) / G
I
V
OUT
V
OUT2
V
OUT1
V
IN1
V
IN
V
IN2
IDEAL TRANSFER
FUNCTION (LINE)
0
Figure 3. Transfer Function of an Ideal Instrumentation
Amplifier (Straight Line Passing Through the Origin)
V
OUT
ACTUAL CURVE
A
E
0
B
Z
END-POINT LINE
IDEAL LINE
V
IN
Figure 4. Typical Transfer Function for a Real Instrumentation
Amplifier
V
OUT
ACTUAL CURVE
END-POINT LINE
IDEAL LINE SHIFT
NL+
NL-
C
0
E
Z
B
D
A
V
IN
SLOPE
(CD)
= IDEAL GAIN = G
I
SLOPE
(AB)
= ACTUAL GAIN = G
A
GAIN ERROR (%) = GE (%) = 100 X (G
A
- G
I
) / G
I
OFFSET
(END POINT)
= OE
NL- = NL+
Figure 5. Typical Transfer Function for a Real Instrumentation
Amplifier (Ideal Line (CD) Is Shifted by the End-Points Offset
(OE) to Visualize Gain Error)
MAX4460/MAX4461/MAX4462
SOT23, 3V/5V, Single-Supply, Rail-to-Rail
Instrumentation Amplifiers
______________________________________________________________________________________ 15
The rotational nature of gain error, and the fact that it is
pivoted around point E in Figure 5, shows that gain-
error contribution to the total output voltage error is
directly proportional to the input voltage. At zero input
voltage, the error contribution of gain error is zero, i.e.,
the total deviation from the origin (the expected zero
output value) is only due to end-points OE and nonlin-
earity error at zero value of input (segment EZ on the
vertical axis).
The nonlinearity is the maximum deviation from a
straight line, and the end-point nonlinearity is the devia-
tion from the end-point line. As shown in Figure 5, it is
likely that two nonlinearities are encountered, one posi-
tive and the other a negative nonlinearity error, shown
as NL+ and NL- in Figure 5.
Generally, NL+ and NL- have different values and this
remains the case if the device is calibrated (trimmed)
for end-points errors (which means changing the gain
of the instrumentation amplifier in such a way that the
slope of line AB becomes equal to that of CD, and the
offset becomes trimmed such that OE vanishes to
zero). This is an undesirable situation when nonlinearity
is of prime interest.
The straight line shown in Figure 6 is in parallel to end-
points line AB and has a Y intercept of OS on the verti-
cal axis. This line is a shifted end-points line such that
the positive and negative nonlinearity errors with
respect to this line are equal. For this reason, the line is
called the best straight line (BSL). Maxim internally
trims the MAX4460/MAX4461/MAX4462 with respect to
this line (changing the gain slope to be as close as
possible to the slope of the ideal line and trimming the
offset such that OS gets as close to the origin as possi-
ble) to minimize all the errors. The total accuracy error
is still the summation of the gain error, nonlinearity, and
offset errors.
As an example, assume the following specification for
an instrumentation amplifier:
Gain = 10
GE = 0.15%
Offset (BSL) = 250µV
NL = 0.05%
V
DIF
(input) = -100mV to +100mV
What is the maximum total error associated with the
GE, offset (BSL), and NL? With a differential input range
of -0.1V to +0.1V and a gain of 10, the output voltage
assumes a range of -1V to +1V, i.e., a total full-scale
range of 2V.
The individual errors are as follows:
GE = (0.15%) (10) (100mV) = 1.5mV
Offset (BSL) = (250µV) (10) = 2.5mV
NL = (0.05%) (2V) = 1mV
Maximum Total Error = 1.5mV + 2.5mV + 1mV
= 5mV
So, the absolute value of the output voltage, consider-
ing the above errors, would be at worst case between
0.995V to 1.005V. Note that other important parameters
such as PSRR, CMRR, and noise also contribute to the
total error in instrumentation applications. They are not
considered here.
V
IN
V
OUT
ACTUAL CURVE
END-POINT LINE
BSL LINE
NL+
NL-
0
E
Z
B
S
A
NL+ = NL- = NL
NL
BSL
(%) = (NL / FULL-SCALE OUTPUT RANGE) X 100
OFFSET (BSL) = OSL
GAIN AND OFFSET WILL BE FACTORY-TRIMMED FOR BEST STRAIGHT LINE
Figure 6. To Minimize Nonlinearity Error, the MAX4460/MAX4461/
MAX4462 are Internally Trimmed to Adjust Gain and Offset for the
Best Straight Line so NL- = NL+

MAX4461UEUT-T

Mfr. #:
Manufacturer:
Maxim Integrated
Description:
Instrumentation Amplifiers 3V/5V Single-Supply Rail-Rail
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union