Data Sheet ADG408/ADG409
Rev. D | Page 7 of 15
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
A0
EN
V
SS
S1
A1
A2
GND
V
DD
S2
S5
S3
S6
S4
S7
DS8
1
2
3
4
16
15
14
13
5
6
7
12
11
10
8
9
ADG408
TOP VIEW
(Not to Scale)
00027-002
Figure 2. ADG408 Pin Configuration
A0
1
EN
2
V
SS
3
S1A
4
A1
16
GND
15
V
DD
14
S1B
13
S2A
5
S3A
6
S4A
7
S2B
12
S3B
11
S4B
10
DA
8
DB
9
ADG409
TOP VIEW
(Not to Scale)
00027-003
Figure 3. ADG409 Pin Configuration
Table 4. ADG408 Pin Function Descriptions
Pin
No. Mnemonic Description
1 A0 Logic Control Input.
2 EN Active High Digital Input. When low, the
device is disabled and all switches are off.
When high, Ax logic inputs determine on
switches.
3
V
SS
Most Negative Power Supply Potential in
Dual Supplies. In single-supply applications,
it can be connected to ground.
4 S1 Source Terminal 1. Can be an input or
an output.
5 S2 Source Terminal 2. Can be an input or
an output.
6 S3 Source Terminal 3. Can be an input or
an output.
7 S4 Source Terminal 4. Can be an input or
an output.
8 D Drain Terminal. Can be an input or an
output.
9 S8 Source Terminal 8. Can be an input or
an output.
10 S7 Source Terminal 7. Can be an input or
an output.
11 S6 Source Terminal 6. Can be an input or
an output.
12 S5 Source Terminal 5. Can be an input or
an output.
13
V
DD
Most Positive Power Supply Potential.
14 GND Ground (0 V) Reference.
15 A2 Logic Control Input.
16 A1 Logic Control Input.
Table 5. ADG409 Pin Function Descriptions
Pin
No.
Mnemonic Description
1 A0 Logic Control Input.
2 EN Active High Digital Input. When low, the
device is disabled and all switches are off.
When high, Ax logic inputs determine on
switches.
3 V
SS
Most Negative Power Supply Potential in
Dual Supplies. In single-supply applications,
it can be connected to ground.
4 S1A Source Terminal 1A. Can be an input or
an output.
5 S2A Source Terminal 2A. Can be an input or
an output.
6 S3A Source Terminal 3A. Can be an input or
an output.
7 S4A Source Terminal 4A. Can be an input or
an output.
8 DA Drain Terminal A. Can be an input or an
output.
9 DB Drain Terminal B. Can be an input or an
output.
10 S4B Source Terminal 4B. Can be an input or
an output.
11 S3B Source Terminal 3B. Can be an input or
an output.
12 S2B Source Terminal 2B. Can be an input or
an output.
13 S1B Source Terminal 1B. Can be an input or
an output.
14 V
DD
Most Positive Power Supply Potential.
15 GND Ground (0 V) Reference.
16 A1 Logic Control Input.
Table 6. ADG408 Truth Table
A2 A1 A0 EN On Switch
X X X 0 None
0 0 0 1 1
0 0 1 1 2
0 1 0 1 3
0 1 1 1 4
1 0 0 1 5
1 0 1 1 6
1 1 0 1 7
1 1 1 1 8
Table 7. ADG409 Truth Table
On Switch
A1 A0 EN Pair
X X 0 None
0 0 1 1
0 1 1 2
1 0 1 3
1 1 1 4
ADG408/ADG409 Data Sheet
Rev. D | Page 8 of 15
TYPICAL PERFORMANCE CHARACTERISTICS
120
20
80
40
100
60
V
D
[V
S
](V)
R
ON
()
T
A
= 25°C
V
DD
=+5V
V
SS
= –5V
V
DD
=+12V
V
SS
= –12V
V
DD
=+15V
V
SS
= –15V
V
DD
= +10V
V
SS
= –10V
–15 –10 –5 0 5 10 15
00027-004
Figure 4. R
ON
as a Function of V
D
(V
S
): Dual-Supply Voltage
100
30
80
70
50
40
60
90
V
DD
= +15V
V
SS
= –15V
125°C
85°C
25°C
V
D
[V
S
](V)
–15 –10 –5 0 5 10 15
R
ON
()
00027-005
Figure 5. R
ON
as a Function of V
D
(V
S
) for Different Temperatures
0.2
–0.2
LEAKAGE CURRENT (nA)
0
–0.1
0.1
I
D
(OFF)
I
S
(OFF)
I
D
(ON)
V
D
[V
S
](V)
–15 –10 –5 0 5 10 15
T
A
= 25°C
V
DD
=+15V
V
SS
= –15V
00027-006
Figure 6. Leakage Currents as a Function of V
D
(V
S
)
180
40
140
120
80
60
160
100
V
D
[V
S
](V)
R
ON
()
T
A
=25°C
V
DD
=5V
V
SS
=0V
V
DD
=12V
V
SS
=0V
V
DD
=15V
V
SS
=0V
V
DD
=10V
V
SS
=0V
03691215
00027-007
Figure 7. R
ON
as a Function of V
D
(V
S
): Single-Supply Voltage
130
60
100
80
70
90
120
110
R
ON
()
V
D
[V
S
](V)
V
DD
= 12V
V
SS
=0V
125°C
85°C
25°C
024681012
00027-008
Figure 8. R
ON
as a Function of V
D
(V
S
) for Different Temperature
0.04
–0.06
LEAKAGE CURRENT (nA)
0
–0.04
0.02
–0.02
V
D
[V
S
](V)
T
A
=25°C
V
DD
= 12V
V
SS
=0V
I
S
(OFF)
I
D
(OFF)
I
D
(ON)
024681012
0
0027-009
Figure 9. Leakage Currents as a Function of V
D
(V
S
)
Data Sheet ADG408/ADG409
Rev. D | Page 9 of 15
120
20
TIME (ns)
60
40
100
80
V
IN
(V)
V
DD
=+15V
V
SS
= –15V
t
TRANSITION
t
OFF
(EN)
t
ON
(EN)
13579111315
00027-010
Figure 10. Switching Time vs. V
IN
(Bipolar Supply)
400
0
TIME (ns)
200
100
300
V
IN
=5V
579111315
V
SUPPLY
(V)
t
TRANSITION
t
ON
(EN)
t
OFF
(EN)
00027-011
Figure 11. Switching Time vs. Single Supply
FREQUENCY (Hz)
I
DD
(µA)
V
DD
= +15V
V
SS
= –15V
EN = 2.4V
EN = 0V
10 100 1k 10k 100k 1M 10M
00027-012
10
100
1,000
10,000
100,000
Figure 12. Positive Supply Current vs. Switching Frequency
140
40
TIME (ns)
100
60
120
80
V
IN
(V)
V
DD
=12V
V
SS
=0V
135791113
t
OFF
(EN)
t
ON
(EN)
t
TRANSITION
00027-013
Figure 13. Switching Time vs. V
IN
(Single Supply)
300
0
±5 ±15±7
TIME (ns)
±9 ±11 ±13
200
100
V
IN
=5V
V
SUPPLY
(V)
t
TRANSITION
t
ON
(EN)
t
OFF
(EN)
00027-014
Figure 14. Switching Time vs. Bipolar Supply
10 100 1k 10k 100k 1M 10M
EN = 0V
EN = 2.4V
V
DD
= +15V
V
SS
= –15V
FREQUENCY (Hz)
I
SS
(µA)
0
0027-015
0.0001
0.001
0.01
0.1
1
10
100
1,000
10,000
100,000
Figure 15. Negative Supply Current vs. Switching Frequency

ADG408BRUZ

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Multiplexer Switch ICs 8:1 40 Ohm LC2MOS High Performance
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union