4
LTC1325
TYPICAL PERFORMANCE CHARACTERISTICS
UW
LOAD CURRENT
(mA)
0
REGULATOR OUTPUT VOLTAGE (V)
3.074
3.075
3.076
3.0
1325 G01
3.073
3.072
0.5 1.0 1.5 2.5 3.52.0 4.0
3.071
3.070
3.077
V
DD
= 12V
V
DD
= 4.5V
V
DD
= 16V
T
A
= 27°C
TEMPERATURE (°C)
0
0
SHUTDOWN CURRENT (µA)
5
15
20
25
20
40
50 90
1325 G06
10
10 30
60
70
80
V
DD
= 12V
V
DD
= 16V
V
DD
= 4.5V
TEMPERATURE (°C)
0
V
DD
SUPPLY CURRENT (µA)
1000
900
800
700
600
500
400
300
200
100
0
20
40
50 90
1325 G03
10 30
60
70
80
V
DD
= 16V
V
DD
= 4.5V
V
DD
= 12V
DAC Output Voltage vs
Temperature
TEMPERATURE (°C)
0
3.072
3.073
3.075
3.076
3.077
3.082
3.079
20
40
50 90
1325 G02
3.074
3.080
3.081
3.078
10 30
60
70
80
V
DD
= 16V
I
REG
= 0
V
DD
= 4.5V
REGULATOR OUTPUT VOLTAGE (V)
V
DD
= 12V
Fault Comparator Threshold vs
Temperature
Fault Comparator Threshold vs
Temperature
TEMPERATURE (°C)
0
FAULT COMPARATOR THRESHOLD (V)
11
10
9
8
7
6
5
4
3
2
1
20
40
50
1325 G08
10 30
60
70
80
V
BAT
FOR BATP = HIGH, V
DD
= 12V
V
CELL
FOR MCV = HIGH, V
MCV
= 2.8V AND
V
TBAT
FOR LTF = HIGH, V
LTF
= 2.8V
V
TBAT
FOR HTF = HIGH, V
HTF
= 1.35V
V
CELL
FOR MCV = HIGH, V
MCV
= 1.6V
V
TBAT
FOR LTF = HIGH, V
LTF
= 1.6V
Gas Gauge Gain and Offset vs
Temperature
V
DD
Supply Current vs
Temperature
TEMPERATURE (°C)
0
4.5
GAS GAUGE GAIN AND OFFSET (COUNTS)
4.0
–3.0
2.5
–2.0
7060
0
1325 G09
3.5
10 20 30 40 50 80
–1.5
–1.0
0.5
V
SENSE
= –0.2V AND –0.4V
INCLUDES CHANGES IN V
REG
WITH TEMPERATURE
GAS GAUGE OFFSET
GAS GAUGE GAIN
Charge Current vs Battery Voltage
Regulator Output Voltage vs
Load Current
Regulator Output Voltage vs
Temperature
TEMPERATURE (°C)
0
DAC OUTPUT VOLTAGE (mV)
180
160
140
120
100
80
60
40
20
0
30 50
1325 G05
10 20
40 60 70
V
DD
= 12V
VR1 = 1, VR0 = 1
VR1 = 1, VR0 = 0
VR1 = 0, VR0 = 0
VR1 = 0, VR0 = 1
Shutdown Current vs Temperature
BATTERY VOLTAGE (V)
0
CHARGE CURRENT (mA)
160
140
120
100
80
60
40
20
0
2
468
1325 G04
10 12
VR1 = 1, VR0 = 1
VR1 = 1, VR0 = 0
VR1 = 0, VR0 = 0
VR1 = 0, VR0 = 1
V
DD
= 12V, R
SENSE
= 1,
L = 100µH, P1: IRF9531
TEMPERATURE (°C)
0
0
FAULT COMPARATOR THRESHOLD (V)
0.1
0.3
0.4
0.5
1.0
0.7
20
40
50
1325 G07
0.2
0.8
0.9
0.6
10 30
60
70
80
V
CELL
FOR EDV = HIGH
V
TBAT
FOR HTF = HIGH, V
HTF
= 0.4V
V
CELL
FOR BATR = HIGH
5
LTC1325
TYPICAL PERFORMANCE CHARACTERISTICS
UW
LOAD CAPACITANCE (nF)
0
PGATE RISE TIME (ns)
400
800
1200
1000
600
200
4 8 12 16
1325 G10
2020 6 10 14 18
T
A
= 0°C
T
A
= 70°C
T
A
= 27°C
LOAD CAPACITANCE
(nF)
0
PGATE FALL TIME (ns)
600
800
1000
900
700
500
300
100
16
LTC1325 G11
400
200
0
42 6 10 14 18
8
12
20
T
A
= 70°C
T
A
= 0°C
T
A
= 27°C
PGATE Fall Time vs
Load Capacitance
CODE
0
DIFFERENTIAL NONLINEARITY (LSB)
1024
1325 G12
256
512
768
1.0
0.5
0
0.5
1.0
128 384 640
896
V
DD
= 12V
f
CLK
= 500kHz
LOAD CAPACITANCE (nF)
0
0
DISCHARGE RISE AND FALL TIME (µs)
2
6
8
10
14
2
10
14
1325 G13
4
12
8
18
20
4
6
12 16
T
A
= 70°C
T
A
= 27°C
T
A
= 0°C
RISE TIME
FALL TIME
CODE
0
INTEGRAL NONLINEARITY (LSB)
1024
1325 G15
256
512
768
1.0
0.5
0
0.5
1.0
128 384 640
896
V
DD
= 12V
f
CLK
= 500kHz
Integral Nonlinearity
TEMPERATURE (°C)
–40
108
OSCILLATOR FREQUENCY (kHz)
109
111
112
113
118
115
0
40
60
1325 G16
110
116
117
114
–20
20
80
100
Oscillator Frequency vs
Temperature
TEMPERATURE (°C)
0
CLK TO D
OUT
VALID DELAY TIME (ns)
400
500
600
60
1325 G18
300
200
10 20 30 50 7040
80
100
0
700
D
OUT
GOING HIGH
D
OUT
GOING LOW
CLK to D
OUT
Enable Delay Time
vs Temperature
CLK to D
OUT
Valid Delay Time
vs Temperature
TEMPERATURE (°C)
0
0
CLK TO D
OUT
ENABLE DELAY TIME (ns)
50
150
200
250
500
350
20
40
50
1325 G17
100
400
450
300
10 30
60
70
80
NUMBER OF CELLS
1
MINIMUM CHARGE VOLTAGE (V)
7
1325 G14
35
16
14
12
10
8
6
4
2
0
2468
R
SENSE
= 1, VR1 = 1, VR0 = 1
L = 25µH TO 100µH
IRF9Z30PFET, 1N5819 DIODE
R
SENSE
= 0.15, VR1 = 1,VR0 = 1
L = 10µH TO 100µH
IRF9Z30PFET, 1N5819 DIODE
T
A
= 27°C, NiCd BATTERIES
V
CELL
= 1.4V NOMINAL
Discharge Rise and Fall Time
vs Load Capacitance
Minimum Charging Supply vs
Number of Cells
Differential Nonlinearity
PGATE Rise Time vs
Load Capacitance
6
LTC1325
REG (Pin 1): Internal Regulator Output. The regulator
provides a steady 3.072V to the internal analog circuitry
and provides a temperature stable reference voltage for
generating MCV, HTF, LTF and thermistor bias voltages
with external resistors. Requires a 4.7µF or greater bypass
capacitor to ground.
D
OUT
(Pin 2): TTL Data Output Signal for the Serial
Interface. D
OUT
and D
IN
may be tied together to form a
3-wire interface, or remain separated to form a 4-wire
interface. Data is transmitted on the falling edge of CLK
(Pin 5).
D
IN
(Pin 3): TTL Data Input Signal for the Serial Interface.
The data is latched into the chip on the rising edge of the
CLK (Pin 5).
CS (Pin 4): TTL Chip Select Signal for the Serial Interface.
CLK (Pin 5): TTL Clock for the Serial Interface.
LTF (Pin 6): Minimum Allowable Battery Temperature
Analog Input. LTF may be generated by a resistive divider
between REG (Pin 1) and ground.
MCV (Pin 7): Maximum Allowable Cell Voltage Analog
Input. MCV may be generated by a resistive divider be-
tween REG (Pin 1) and ground.
HTF (Pin 8): Maximum Allowable Battery Temperature
Analog Input. HTF may be generated by a resistive divider
between REG (Pin 1) and ground.
GND (Pin 9): Ground.
FILTER (Pin 10): The external filter capacitor C
F
is con-
nected to this pin. The filter capacitor is connected to the
output of the internal resistive divider across the battery to
reduce the switching noise while charging. In the gas
gauge mode, C
F
along with an internal R
F
= 1k form a
lowpass filter to average the voltage across the sense
resistor.
PIN FUNCTIONS
UUU
SENSE (Pin 11): The Sense pin controls the switching of
the 111kHz PWM constant current source in the charging
mode. The Sense pin is connected to an external sense
resistor R
SENSE
and the negative side of the battery. The
charging loop forces the average voltage at the Sense pin
to equal a programmable internal reference voltage V
DAC
.
The battery charging current is equal to V
DAC
/R
SENSE
.
In the gas gauge mode the voltage across the Sense pin
is filtered by an RC network (R
F
and C
F
), amplified by
an inverting gain of four, then multiplexed to the ADC so
the average discharge current through the battery may
be measured and the total charge leaving the battery
calculated.
V
IN
(Pin 12): General Purpose ADC Input.
T
AMB
(Pin 13): Ambient Temperature Input. Connect to an
external thermistor network. Tie to REG if not used. May
be used as another general purpose ADC input.
T
BAT
(Pin 14): Battery Temperature Input. Connect to an
external NTC thermistor network. Tie to REG if not used.
V
BAT
(Pin 15): Battery Input. An internal voltage divider is
connected between the V
BAT
and Sense pins to normalize
all battery measurements to one cell voltage. The divider
is programmable to the following ratios: 1/1, 1/2, 1/3 . . .
1/15, 1/16. In shutdown and gas gauge modes the divider
is disconnected.
DIS (Pin 16): Active High Discharge Control Pin. Used
to turn on an external transistor which discharges the
battery.
PGATE (Pin 17): FET Driver Output. Swings from GND
to V
DD
.
V
DD
(Pin 18): Positive Supply Voltage. 4.5V < V
DD
< 16V.

LTC1325CSW#PBF

Mfr. #:
Manufacturer:
Analog Devices / Linear Technology
Description:
Battery Management Microprocessor-Controlled Battery Management System
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet