Characteristics ACST2
4/13 Doc ID 13304 Rev 3
Figure 4. On-state rms current versus
ambient temperature
Figure 5. Relative variation of thermal
impedance versus pulse duration
TO-220FPAB
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0 25 50 75 100 125
I
T(RMS)
(A)
α=180 °
Printed circuit board FR4
Natural convection
S
CU
=0.5 cm²
T
amb
(°C)
0.01
0.10
1.00
1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03
K=[Z
th
/R
th
]
Z
th(j-a)
Z
th(j-c)
TO-220FPAB
t
P
(s)
Figure 6. Relative variation of thermal
impedance versus pulse duration
DPAK
Figure 7. Relative variation of gate trigger,
holding and latching current versus
junction temperature
1.0E-02
1.0E-01
1.0E+00
1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03
K=[Z
th
/R
th
]
Z
th(j-a)
Z
th(j-c)
DPAK
t
P
(s)
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130
I
GT
,I
H
,I
L
[T
J
]/I
GT
,I
H
,I
L
[T
j
=25 °C]
I
GT
I
L
& I
H
T
j
(°C)
Typical values
Figure 8. Relative variation of static dV/dt
versus junction temperature
Figure 9. Relative variation of critical rate of
decrease of main current versus
reapplied dV/dt (typical values)
1
10
100
25 50 75 100 125
dV/dt [T
j
]/dV/dt[T
j
=125 °C]
V
OUT
=540 V
T
j
(°C)
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0.1 1.0 10.0 100.0
(dI/dt)
c
[(dV/dt)
c
] / Specified (dI/dt)
c
V
OUT
=300 V
(dV/dt)
c
(V/µs)
ACST2 Characteristics
Doc ID 13304 Rev 3 5/13
Figure 10. Relative variation of critical rate of
decrease of main current versus
junction temperature
Figure 11. Surge peak on-state current versus
number of cycles
0
2
4
6
8
10
12
14
16
18
20
25 50 75 100 125
(dI/dt)
c
[T
j
]/(dI/dt)
c
[T
j
=125 °C]
V
OUT
=300 V
T
j
(°C)
0
1
2
3
4
5
6
7
8
9
1 10 100 1000
I
TSM
(A)
Non repetitive
T
j
initial=25 °C
Repetitive
T
C
=110 °C
One cycle
t=20ms
Number of cycles
Figure 12. Non repetitive surge peak on-state
current and corresponding value
of I
²
t
Figure 13. On-state characteristics (maximum
values)
0.1
1.0
10.0
100.0
0.01 0.10 1.00 10.00
I
TSM
(A), I²t (A²s)
T
j
initial=25 °C
I
TSM
I²t
t
P
(ms)
sinusoidal pulse
with width t < 10 ms
P
1.E-02
1.E-01
1.E+00
1.E+01
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
I
TM
(A)
T
J
max. :
V
TO
= 0.90 V
R
D
= 250 mW
T
j
=25 °C
T
j
=125 °C
V
TM
(V)
Figure 14. Thermal resistance junction to
ambient versus copper surface
under tab DPAK
Figure 15. Relative variation of clamping
voltage V
CL
versus junction
temperature
0
10
20
30
40
50
60
70
80
90
100
0 5 10 15 20 25 30 35 40
R
th(j-a)
(°C/W)
DPAK
S
CU
(cm²)
printed circuit board FR4,
copper thickness = 35 µm
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
-40 -20 0 20 40 60 80 100 120 140
V
CL
[T
j
]/V
CL
[T
j
=25 °C]
T
j
(°C)
Application information ACST2
6/13 Doc ID 13304 Rev 3
2 Application information
2.1 Typical application description
The ACST2 device has been designed to switch on and off highly inductive or resistive loads
such as pump, valve, fan, or bulb lamp. Thanks to its high sensitivity (I
GT
max = 10 mA), the
ACST2 can be driven directly by logic level circuits through a resistor as shown on the
typical application diagram. Thanks to its thermal and turn-off commutation performances,
the ACST2 switch can drive, without any additional snubber, an inductive load up to 2 A.
Figure 16. AC induction motor control – typical diagram
AC LOAD
MCU
Line
Power supply
L
AC Mains
R
Rg
ACST2

ACST2-8SB

Mfr. #:
Manufacturer:
STMicroelectronics
Description:
Triacs AC Switch family Alter current switch
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union