XR16M570
25
REV. 1.0.1 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 16-BYTE FIFO
4.0 INTERNAL REGISTER DESCRIPTIONS
4.1 Receive Holding Register (RHR) - Read- Only
SEE”RECEIVER” ON PAGE 14.
4.2 Transmit Holding Register (THR) - Write-Only
SEE”TRANSMITTER” ON PAGE 13.
Baud Rate Generator Divisor
0 0 0 DREV RD Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0 LCR[7] = 1
LCR
0xBF
DLL= 0x00
DLM= 0x00
0 0 1 DVID RD 0 0 0 0 0 0 0 1
0 0 0 DLL RD/WR Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0 LCR[7] = 1
LCR
0xBF
DLD[7:6]
0 0 1 DLM RD/WR Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0
0 1 0 DLD RD/WR
BRG
select
Enable
Indepen-
dent
BRG
4X Mode 8X Mode Bit-3 Bit-2 Bit-1 Bit-0 LCR[7] = 1
LCR
0xBF
EFR[4] = 1
Enhanced Registers
0 0 0 FC RD Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0 LCR=0XBF
0 0 1 FCTR RD/WR RX/TX
select
Swap
SCR
0 0 RS485
interrupt
mode
invert
RX IR
00
0 1 0 EFR RD/WR Auto
CTS#
Enable
Auto
RTS#
Enable
Special
Char
Select
Enable
IER [7:4],
ISR [5:4],
FCR[5:3],
MCR[7:5],
DLD
Soft-
ware
Flow
Cntl
Bit-3
Soft-
ware
Flow
Cntl
Bit-2
Soft-
ware
Flow
Cntl
Bit-1
Soft-
ware
Flow
Cntl
Bit-0
1 0 0 XON1 RD/WR Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0
1 0 1 XON2 RD/WR Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0
1 1 0 XOFF1 RD/WR Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0
1 1 1 XOFF2 RD/WR Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0
TABLE 7: INTERNAL REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1
ADDRESS
A2-A0
REG
NAME
READ/
WRITE
BIT-7 BIT-6 BIT-5 BIT-4 BIT-3 BIT-2 BIT-1 BIT-0 COMMENT
XR16M570
26
1.62V TO 3.63V HIGH PERFORMANCE UART WITH 16-BYTE FIFO REV. 1.0.1
4.3 Interrupt Enable Register (IER) - Read/Write
The Interrupt Enable Register (IER) masks the interrupts from receive data ready, transmit empty, line status
and modem status registers. These interrupts are reported in the Interrupt Status Register (ISR).
4.3.1 IER versus Receive FIFO Interrupt Mode Operation
When the receive FIFO (FCR BIT-0 = 1) and receive interrupts (IER BIT-0 = 1) are enabled, the RHR interrupts
(see ISR bits 2 and 3) status will reflect the following:
A. The receive data available interrupts are issued to the host when the FIFO has reached the selected trig-
ger level. It will be cleared when the FIFO drops below the selected trigger level.
B. FIFO level will be reflected in the ISR register when the FIFO trigger level is reached. Both the ISR register
status bit and the interrupt will be cleared when the FIFO drops below the trigger level.
C. The receive data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to
the receive FIFO. It is reset when the FIFO is empty.
4.3.2 IER versus Receive/Transmit FIFO Polled Mode Operation
When FCR BIT-0 equals a logic 1 for FIFO enable; resetting IER bits 0-3 enables the XR16M570 in the FIFO
polled mode of operation. Since the receiver and transmitter have separate bits in the LSR either or both can
be used in the polled mode by selecting respective transmit or receive control bit(s).
A. LSR BIT-0 indicates there is data in RHR
or RX FIFO.
B. LSR BIT-1 indicates an overrun error has occurred and that data in the FIFO may not be valid.
C. LSR BIT 2-4 provides the type of receive data errors encountered for the data byte in RHR, if any.
D. LSR BIT-5 indicates THR is empty.
E. LSR BIT-6 indicates when both the transmit FIFO and TSR are empty.
F. LSR BIT-7 indicates a data error in at least one character in the RX FIFO.
IER[0]: RHR Interrupt Enable
The receive data ready interrupt will be issued when RHR has a data character in the non-FIFO mode
or when
the receive FIFO has reached the selected trigger level in the FIFO mode.
Logic 0 = Disable the receive data ready interrupt (default).
Logic 1 = Enable the receiver data ready interrupt.
IER[1]: THR Interrupt Enable
This bit enables the Transmit Ready interrupt which is issued whenever the THR becomes empty in the non-
FIFO mode or when data in the FIFO falls below the selected trigger level in the FIFO mode. If the THR is
empty when this bit is enabled, an interrupt will be generated.
Logic 0 = Disable Transmit Ready interrupt (default).
Logic 1 = Enable Transmit Ready interrupt.
IER[2]: Receive Line Status Interrupt Enable
If any of the LSR register bits 1, 2, 3 or 4 is a logic 1, it will generate an interrupt to inform the host controller
about the error status of the current data byte in FIFO. LSR bit-1 generates an interrupt immediately when an
overrun occurs. LSR bits 2-4 generate an interrupt when the character in the RHR has an error. However,
when EMSR bit-6 changes to 1 (default is 0), LSR bit 2-4 generate an interrupt when the character is received
in the RX FIFO. Please refer to “Section 4.12, Enhanced Mode Select Register (EMSR) - Write-only” on
page 35.
Logic 0 = Disable the receiver line status interrupt (default).
Logic 1 = Enable the receiver line status interrupt.
XR16M570
27
REV. 1.0.1 1.62V TO 3.63V HIGH PERFORMANCE UART WITH 16-BYTE FIFO
IER[3]: Modem Status Interrupt Enable
Logic 0 = Disable the modem status register interrupt (default).
Logic 1 = Enable the modem status register interrupt.
IER[4]: Sleep Mode Enable (requires EFR[4] = 1)
Logic 0 = Disable Sleep Mode (default).
Logic 1 = Enable Sleep Mode. See Sleep Mode section for further details.
IER[5]: Xoff Interrupt Enable (requires EFR[4]=1)
Logic 0 = Disable the software flow control, receive Xoff interrupt. (default)
Logic 1 = Enable the software flow control, receive Xoff interrupt. See Software Flow Control section for
details.
IER[6]: RTS# Output Interrupt Enable (requires EFR[4]=1)
Logic 0 = Disable the RTS# interrupt (default).
Logic 1 = Enable the RTS# interrupt. The UART issues an interrupt when the RTS# pin makes a transition
from LOW to HIGH (if enabled by EFR bit-6).
IER[7]: CTS# Input Interrupt Enable (requires EFR[4]=1)
Logic 0 = Disable the CTS# interrupt (default).
Logic 1 = Enable the CTS# interrupt. The UART issues an interrupt when CTS# pin makes a transition from
LOW to HIGH (if enabled by EFR bit-7).
4.4 Interrupt Status Register (ISR) - Read-Only
The UART provides multiple levels of prioritized interrupts to minimize external software interaction. The
Interrupt Status Register (ISR) provides the user with six interrupt status bits. Performing a read cycle on the
ISR will give the user the current highest pending interrupt level to be serviced, others are queued up to be
serviced next. No other interrupts are acknowledged until the pending interrupt is serviced. The Interrupt
Source Table, Table 8, shows the data values (bit 0-5) for the interrupt priority levels and the interrupt sources
associated with each of these interrupt levels.
4.4.1 Interrupt Generation:
LSR is by any of the LSR bits 1, 2, 3 and 4.
RXRDY is by RX trigger level.
RXRDY Time-out is by a 4-char plus 12 bits delay timer.
TXRDY is by TX trigger level or TX FIFO empty.
MSR is by any of the MSR bits 0, 1, 2 and 3.
Receive Xon/Xoff/Special character is by detection of a Xon, Xoff or Special character.
CTS# is when the remote transmitter toggles the input pin (from LOW to HIGH) during auto CTS flow control.
RTS# is when its receiver toggles the output pin (from LOW to HIGH) during auto RTS flow control.
Wakeup interrupt is generated when the M570 wakes up from the sleep mode.

XR16M570IL32TR-F

Mfr. #:
Manufacturer:
MaxLinear
Description:
UART Interface IC 1.8 HIGH PERFORMANCE UART W/16
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union