Typical Performance Characteristics
www.vishay.com
Vishay Sprague
Revision: 13-Apr-15
2
Document Number: 40194
For technical questions, contact: tantalum@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Notes
At +25 °C, the leakage current shall not exceed the value listed in the Standard Ratings table.
At +85 °C, the leakage current shall not exceed 10 times the value listed in the Standard Ratings table.
At +125 °C, the leakage current shall not exceed 12 times the value listed in the Standard Ratings table.
TYPICAL LEAKAGE CURRENT TEMPERATURE FACTOR
ENVIRONMENTAL PERFORMANCE CHARACTERISTICS
ITEM CONDITION POST TEST PERFORMANCE
Surge voltage Post application of surge voltage (as specified
in the table above) in series with a 33 resistor
at the rate of 30 s ON, 30 s OFF, for 1000
successive test cycles at 85 °C
MIL-PRF-55365
Capacitance change
Dissipation factor
Leakage current
Within ± 10 % of initial value
Initial specified limit
Initial specified limit
Life test at +85 °C 2000 h application of rated voltage at 85 °C
MIL-STD-202, method 108
Capacitance change
Dissipation factor
Leakage current
Within ± 10 % of initial value
Initial specified limit
Shall not exceed 125 % of initial limit
Life test at +125 °C 1000 h application 2/3 of rated voltage at 125 °C
MIL-STD-202, method 108
Capacitance change:
Cap. 600 μF
Cap. > 600 μF
Dissipation factor
Leakage current
Within ± 10 % of initial value
Within ± 20 % of initial value
Initial specified limit
Shall not exceed 125 % of initial limit
Humidity test At 40 °C / 90 % RH, 1000 h, no voltage applied
MIL-STD-202, method 103
Capacitance change:
Cap. 600 μF
Cap. > 600 μF
Dissipation factor
Leakage current
Within ± 10 % of initial value
Within ± 20 % of initial value
Not to exceed 150 % of initial limit
Shall not exceed 200 % of initial limit
Moisture resistance MIL-STD-202, method 106 at rated voltage,
20 cycles
Capacitance change:
Cap. 600 μF
Cap. > 600 μF
Dissipation factor
Leakage current
Within ± 15 % of initial value
Within ± 20 % of initial value
Shall not exceed 150 % of initial limit
Shall not exceed 200 % of initial limit
Thermal shock At -55 °C / +125 °C, for 5 cycles,
30 min at each temperature
MIL-STD-202, method 107
Capacitance change:
Cap. 600 μF
Cap. > 600 μF
Dissipation factor
Leakage current
Within ± 10 % of initial value
Within ± 20 % of initial value
Initial specified limit
Initial specified limit
Leakage Current Factor
Percent of Rated Voltage
100
10
1.0
0.1
0.01
0.001
0 10 20 30 40 50 60 70 80 90 100
+125 °C
+85 °C
+55 °C
+25 °C
-55 °C
0 °C
Typical Performance Characteristics
www.vishay.com
Vishay Sprague
Revision: 13-Apr-15
3
Document Number: 40194
For technical questions, contact: tantalum@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
MECHANICAL PERFORMANCE CHARACTERISTICS
ITEM CONDITION POST TEST PERFORMANCE
Terminal strength /
Shear force test
Apply a pressure load of 5 N for 10 s ± 1 s horizontally
to the center of capacitor side body AEC-Q200-006
Capacitance change
Dissipation factor
Leakage current
Within ± 10 % of initial value
Initial specified limit
Initial specified limit
There shall be no mechanical or visual damage to
capacitors post-conditioning.
Vibration MIL-STD-202, method 204, condition D,
10 Hz to 2000 Hz, 20 g peak, 8 h, at rated voltage
Electrical measurements are not applicable, since the
same parts are used for shock (specified pulse) test.
There shall be no mechanical or visual damage to
capacitors post-conditioning.
Shock
(specified pulse)
MIL-STD-202, method 213, condition I,
100 g peak
Capacitance change:
Cap. 600 μF
Cap. > 600 μF
Dissipation factor
Leakage current
Within ± 10 % of initial value
Within ± 20 % of initial value
Initial specified limit
Initial specified limit
There shall be no mechanical or visual damage to
capacitors post-conditioning.
Resistance
to solder heat
MIL-STD-202, method 210, condition J
(SnPb terminations) and K (lead (Pb)-free terminations),
one heat cycle
Capacitance change
Dissipation factor
Leakage current
Within ± 10 % of initial value
Initial specified limit
Initial specified limit
Solderability EIA / IPC / JEDEC J-STD-002
Test B (SnPb) and B1 (lead (Pb)-free).
Preconditioning per category C.
Capacitors with SnPb and lead (Pb)-free terminations
are backward and forward compatible.
Does not apply to gold terminations.
Solder coating of all capacitors shall meet specified
requirements.
There shall be no mechanical or visual damage to
capacitors post-conditioning.
Flammability Encapsulation materials meet UL 94 V-0 with an
oxygen index of 32 %
Legal Disclaimer Notice
www.vishay.com
Vishay
Revision: 08-Feb-17
1
Document Number: 91000
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of
typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding
statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a
particular product with the properties described in the product specification is suitable for use in a particular application.
Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over
time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk.
Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for
such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document
or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
© 2017 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

591D226X9004A2T15H

Mfr. #:
Manufacturer:
Vishay
Description:
Tantalum Capacitors - Solid SMD 22uF 4volts 10% A case Conformal
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union