LT3481
10
3481fc
frequency will be necessary to achieve safe operation at
high input voltages.
If the output is in regulation and no short-circuit or start-up
events are expected, then input voltage transients of up to
36V are acceptable regardless of the switching frequency.
In this mode, the LT3481 may enter pulse-skipping opera-
tion where some switching pulses are skipped to maintain
output regulation. In this mode the output voltage ripple
and inductor current ripple will be higher than in normal
operation.
The minimum input voltage is determined by either the
LT3481’s minimum operating voltage of ~3.6V or by its
maximum duty cycle (see equation in previous section).
The minimum input voltage due to duty cycle is:
V
VV
ft
VV
IN MIN
OUT D
SW
OFF MIN
DSW
()
()
=
+
+
1–
where V
IN(MIN)
is the minimum input voltage, and t
OFF(MIN)
is the minimum switch off-time (150ns). Note that higher
switching frequency will increase the minimum input
voltage. If a lower dropout voltage is desired, a lower
switching frequency should be used.
Inductor Selection
For a given input and output voltage, the inductor value
and switching frequency will determine the ripple current.
The ripple current ΔI
L
increases with higher V
IN
or V
OUT
and decreases with higher inductance and faster switch-
ing frequency. A reasonable starting point for selecting
the ripple current is:
ΔI
L
= 0.4(
(
I
OUT(MAX)
)
where I
OUT(MAX)
is the maximum output load current. To
guarantee suffi cient output current, peak inductor current
must be lower than the LT3481’s switch current limit (I
LIM
).
The peak inductor current is:
I
L(PEAK)
= I
OUT(MAX)
+ ΔI
L
/2
where I
L(PEAK)
is the peak inductor current, I
OUT(MAX)
is
the maximum output load current, and ΔI
L
is the inductor
ripple current. The LT3481’s switch current limit (I
LIM
) is
at least 3.5A at low duty cycles and decreases linearly to
2.5A at DC = 0.8. The maximum output current is a func-
tion of the inductor ripple current:
I
OUT(MAX)
= I
LIM
ΔI
L
/2
Be sure to pick an inductor ripple current that provides
suffi cient maximum output current (I
OUT(MAX)
).
The largest inductor ripple current occurs at the highest
V
IN
. To guarantee that the ripple current stays below the
specifi ed maximum, the inductor value should be chosen
according to the following equation:
L
VV
fI
VV
V
OUT D
L
OUT D
IN MAX
=
+
+
()
Δ
1–
where V
D
is the voltage drop of the catch diode (~0.4V),
V
IN(MAX)
is the maximum input voltage, V
OUT
is the output
voltage, f
SW
is the switching frequency (set by RT), and
L is in the inductor value.
The inductor’s RMS current rating must be greater than the
maximum load current and its saturation current should be
about 30% higher. For robust operation in fault conditions
(start-up or short circuit) and high input voltage (>30V),
the saturation current should be above 3.5A. To keep the
effi ciency high, the series resistance (DCR) should be less
than 0.1Ω, and the core material should be intended for
high frequency applications. Table 1 lists several vendors
and suitable types.
Table 1. Inductor Vendors
VENDOR URL PART SERIES TYPE
Murata www.murata.com LQH55D Open
TDK www.componenttdk.com SLF7045
SLF10145
Shielded
Shielded
Toko www.toko.com D62CB
D63CB
D75C
D75F
Shielded
Shielded
Shielded
Open
Sumida www.sumida.com CR54
CDRH74
CDRH6D38
CR75
Open
Shielded
Shielded
Open
APPLICATIONS INFORMATION
LT3481
11
3481fc
Of course, such a simple design guide will not always
result in the optimum inductor for your application. A larger
value inductor provides a slightly higher maximum load
current and will reduce the output voltage ripple. If your
load is lower than 2A, then you can decrease the value of
the inductor and operate with higher ripple current. This
allows you to use a physically smaller inductor, or one
with a lower DCR resulting in higher effi ciency. There are
several graphs in the Typical Performance Characteristics
section of this data sheet that show the maximum load
current as a function of input voltage and inductor value
for several popular output voltages. Low inductance may
result in discontinuous mode operation, which is okay
but further reduces maximum load current. For details
of maximum output current and discontinuous mode
operation, see Linear Technology Application Note 44.
Finally, for duty cycles greater than 50% (V
OUT
/V
IN
>
0.5), there is a minimum inductance required to avoid
subharmonic oscillations. See AN19.
Input Capacitor
Bypass the input of the LT3481 circuit with a ceramic capaci-
tor of X7R or X5R type. Y5V types have poor performance
over temperature and applied voltage, and should not be
used. A 4.7μF to 10μF ceramic capacitor is adequate to
bypass the LT3481 and will easily handle the ripple current.
Note that larger input capacitance is required when a lower
switching frequency is used. If the input power source has
high impedance, or there is signifi cant inductance due to
long wires or cables, additional bulk capacitance may be
necessary. This can be provided with a low performance
electrolytic capacitor.
Step-down regulators draw current from the input supply
in pulses with very fast rise and fall times. The input
capacitor is required to reduce the resulting voltage
ripple at the LT3481 and to force this very high frequency
switching current into a tight local loop, minimizing EMI.
A 4.7μF capacitor is capable of this task, but only if it is
placed close to the LT3481 and the catch diode (see the
PCB Layout section). A second precaution regarding the
ceramic input capacitor concerns the maximum input
voltage rating of the LT3481. A ceramic input capacitor
combined with trace or cable inductance forms a high
quality (under damped) tank circuit. If the LT3481 circuit
is plugged into a live supply, the input voltage can ring to
twice its nominal value, possibly exceeding the LT3481’s
voltage rating. This situation is easily avoided (see the Hot
Plugging Safety section).
For space sensitive applications, a 2.2μF ceramic capaci-
tor can be used for local bypassing of the LT3481 input.
However, the lower input capacitance will result in in-
creased input current ripple and input voltage ripple, and
may couple noise into other circuitry. Also, the increased
voltage ripple will raise the minimum operating voltage
of the LT3481 to ~3.7V.
Output Capacitor and Output Ripple
The output capacitor has two essential functions. Along
with the inductor, it fi lters the square wave generated by the
LT3481 to produce the DC output. In this role it determines
the output ripple, and low impedance at the switching
frequency is important. The second function is to store
energy in order to satisfy transient loads and stabilize the
LT3481’s control loop. Ceramic capacitors have very low
equivalent series resistance (ESR) and provide the best
ripple performance. A good starting value is:
C
Vf
OUT
OUT SW
=
100
where f
SW
is in MHz, and C
OUT
is the recommended
output capacitance in μF. Use X5R or X7R types. This
choice will provide low output ripple and good transient
response. Transient performance can be improved with
a higher value capacitor if the compensation network is
also adjusted to maintain the loop bandwidth. A lower
value of output capacitor can be used to save space
and cost but transient performance will suffer. See the
Frequency Compensation section to choose an appropriate
compensation network.
APPLICATIONS INFORMATION
LT3481
12
3481fc
When choosing a capacitor, look carefully through the
data sheet to fi nd out what the actual capacitance is under
operating conditions (applied voltage and temperature).
A physically larger capacitor, or one with a higher voltage
rating, may be required. High performance tantalum or
electrolytic capacitors can be used for the output capacitor.
Low ESR is important, so choose one that is intended for
use in switching regulators. The ESR should be specifi ed
by the supplier, and should be 0.05Ω or less. Such a
capacitor will be larger than a ceramic capacitor and will
have a larger capacitance, because the capacitor must be
large to achieve low ESR. Table 2 lists several capacitor
vendors.
Catch Diode
The catch diode conducts current only during switch off
time. Average forward current in normal operation can
be calculated from:
I
D(AVG)
= I
OUT
(V
IN
– V
OUT
)/V
IN
where I
OUT
is the output load current. The only reason to
consider a diode with a larger current rating than necessary
for nominal operation is for the worst-case condition of
shorted output. The diode current will then increase to the
typical peak switch current. Peak reverse voltage is equal
to the regulator input voltage. Use a diode with a reverse
voltage rating greater than the input voltage. Table 3 lists
several Schottky diodes and their manufacturers.
Table 3. Diode Vendors
PART NUMBER
V
R
(V)
I
AVE
(A)
V
F
AT 1A
(mV)
V
F
AT 2A
(mV)
On Semicnductor
MBRM120E
MBRM140
20
40
1
1
530
550
595
Diodes Inc.
B120
B130
B220
B230
DFLS240L
20
30
20
30
40
1
1
2
2
2
500
500
500
500
500
International Rectifi er
10BQ030
20BQ030
30
30
1
2
420 470
470
Ceramic Capacitors
Ceramic capacitors are small, robust and have very low
ESR. However, ceramic capacitors can cause problems
when used with the LT3481 due to their piezoelectric nature.
When in Burst Mode operation, the LT3481’s switching
frequency depends on the load current, and at very light
loads the LT3481 can excite the ceramic capacitor at audio
frequencies, generating audible noise. Since the LT3481
operates at a lower current limit during Burst Mode op-
eration, the noise is typically very quiet to a casual ear.
If this is unacceptable, use a high performance tantalum
or electrolytic capacitor at the output.
VENDOR PHONE URL PART SERIES COMMANDS
Panasonic (714) 373-7366 www.panasonic.com Ceramic,
Polymer,
Tantalum
EEF Series
Kemet (864) 963-6300 www.kemet.com Ceramic,
Tantalum T494, T495
Sanyo (408) 749-9714 www.sanyovideo.com Ceramic,
Polymer,
Tantalum
POSCAP
Murata (408) 436-1300 www.murata.com Ceramic
AVX www.avxcorp.com Ceramic,
Tantalum TPS Series
Taiyo Yuden (864) 963-6300 www.taiyo-yuden.com Ceramic
Table 2. Capacitor Vendors
APPLICATIONS INFORMATION

LT3481HDD#PBF

Mfr. #:
Manufacturer:
Analog Devices / Linear Technology
Description:
Switching Voltage Regulators 36V, 2A (Iout), 2.8MHz Step-Down Switching Regulator in 3mm x 3mm DFN
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union