Low Cost, Low Power,
True RMS-to-DC Converter
Data Sheet
AD736
Rev. I
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©19882012 Analog Devices, Inc. All rights reserved.
FEATURES
Converts an ac voltage waveform to a dc voltage and then
converts to the true rms, average rectified, or absolute value
200 mV rms full-scale input range (larger inputs with input
attenuator)
High input impedance: 10
12
Low input bias current: 25 pA maximum
High accuracy: ±0.3 mV ± 0.3% of reading
RMS conversion with signal crest factors up to 5
Wide power supply range: +2.8 V, 3.2 V to ±16.5 V
Low power: 200 µA maximum supply current
Buffered voltage output
No external trims needed for specified accuracy
Related device: the AD737features a power-down control
with standby current of only 25 μA; the dc output voltage
is negative and the output impedance is 8 kΩ
GENERAL DESCRIPTION
The AD736 is a low power, precision, monolithic true rms-to-
dc converter. It is laser trimmed to provide a maximum error of
±0.3 mV ± 0.3% of reading with sine wave inputs. Furthermore,
it maintains high accuracy while measuring a wide range of
input waveforms, including variable duty-cycle pulses and triac
(phase)-controlled sine waves. The low cost and small size of
this converter make it suitable for upgrading the performance
of non-rms precision rectifiers in many applications. Compared
to these circuits, the AD736 offers higher accuracy at an equal
or lower cost.
The AD736 can compute the rms value of both ac and dc input
voltages. It can also be operated as an ac-coupled device by
adding one external capacitor. In this mode, the AD736 can
resolve input signal levels of 100 μV rms or less, despite variations
in temperature or supply voltage. High accuracy is also maintained
for input waveforms with crest factors of 1 to 3. In addition,
crest factors as high as 5 can be measured (introducing only 2.5%
additional error) at the 200 mV full-scale input level.
The AD736 has its own output buffer amplifier, thereby pro-
viding a great deal of design flexibility. Requiring only 200 µA
of power supply current, the AD736 is optimized for use in
portable multimeters and other battery-powered applications.
FUNCTIONAL BLOCK DIAGRAM
CC
8kΩ
–VS
CAV
COM
VIN
CAV
OUT
FULL WAVE
RECTIFIER
RMS
CORE
8kΩ
CF
(OPT)
CF
BIAS
SECTION
+
VS
00834-001
Figure 1.
The AD736 allows the choice of two signal input terminals: a
high impedance FET input (10
12
Ω) that directly interfaces with
High-Z input attenuators and a low impedance input (8 kΩ) that
allows the measurement of 300 mV input levels while operating
from the minimum power supply voltage of +2.8 V, −3.2 V. The
two inputs can be used either single ended or differentially.
The AD736 has a 1% reading error bandwidth that exceeds
10 kHz for the input amplitudes from 20 mV rms to 200 mV rms
while consuming only 1 mW.
The AD736 is available in four performance grades. The
AD736J and AD736K grades are rated over the 0°C to +70°C
and −20°C to +85°C commercial temperature ranges. The
AD736A and AD736B grades are rated over the −40°C to +85°C
industrial temperature range. The AD736 is available in three
low cost, 8-lead packages: PDIP, SOIC, and CERDIP.
PRODUCT HIGHLIGHTS
1. The AD736 is capable of computing the average rectified
value, absolute value, or true rms value of various input signals.
2. Only one external component, an averaging capacitor, is
required for the AD736 to perform true rms measurement.
3. The low power consumption of 1 mW makes the AD736
suitable for many battery-powered applications.
4. A high input impedance of 10
12
Ω eliminates the need for an
external buffer when interfacing with input attenuators.
5. A low impedance input is available for those applications that
require an input signal up to 300 mV rms operating from low
power supply voltages.
AD736* PRODUCT PAGE QUICK LINKS
Last Content Update: 02/23/2017
COMPARABLE PARTS
View a parametric search of comparable parts.
EVALUATION KITS
AD736 Evaluation Board
DOCUMENTATION
Application Notes
AN-268: RMS-to-DC Converters Ease Measurement Tasks
AN-269: Extend RMS-to-DC Converter's Range
AN-653: Improving Temperature, Stability, and Linearity
of High Dynamic Range RMS RF Power Detectors
Data Sheet
AD736: Low Cost, Low Power, True RMS-to-DC Converter
Data Sheet
Technical Books
RMS-to-DC Application Guide Second Edition, 1986
TOOLS AND SIMULATIONS
AD736 SPICE Macro Model
DESIGN RESOURCES
AD736 Material Declaration
PCN-PDN Information
Quality And Reliability
Symbols and Footprints
DISCUSSIONS
View all AD736 EngineerZone Discussions.
SAMPLE AND BUY
Visit the product page to see pricing options.
TECHNICAL SUPPORT
Submit a technical question or find your regional support
number.
DOCUMENT FEEDBACK
Submit feedback for this data sheet.
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.
AD736 Data Sheet
Rev. I | Page 2 of 20
TABLE OF CONTENTS
Features .............................................................................................. 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Product Highlights ........................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Absolute Maximum Ratings ............................................................ 5
Thermal Resistance ...................................................................... 5
ESD Caution .................................................................................. 5
Pin Configuration and Function Descriptions ............................. 6
Typical Performance Characteristics ............................................. 7
Theory of Operation ...................................................................... 10
Types of AC Measurement ........................................................ 10
Calculating Settling Time Using Figure 16 ............................. 11
RMS MeasurementChoosing the Optimum Value for C
AV
.... 11
Rapid Settling Times via the Average Responding
Connection .................................................................................. 12
DC Error, Output Ripple, and Averaging Error ..................... 12
AC Measurement Accuracy and Crest Factor ............................ 12
Applications ..................................................................................... 13
Connecting the Input ................................................................. 13
Selecting Practical Values for Input Coupling (C
C
),
Averaging (C
AV
), and Filtering (C
F
) Capacitors ...................... 14
Additional Application Concepts ............................................. 15
Evaluation Board ............................................................................ 17
Outline Dimensions ....................................................................... 19
Ordering Guide .......................................................................... 20
REVISION HISTORY
12/12Rev. H to Rev. I
Changes to Features and Figure 1 .................................................. 1
Change to Error vs. Crest Factor Parameter, Table 1 .................. 3
Changes to Operating Voltage Range Parameter, Table 1 .......... 4
Changes to Table 2 ........................................................................... 5
Added Table 3; Renumbered Sequentially ................................... 5
Changes to Figure 9 ......................................................................... 8
Changes to Figure 16 ....................................................................... 9
Changes to Figure 18 ..................................................................... 10
Added Additional Application Concepts Section and
Changes to Figure 25 ..................................................................... 15
Changes to Figure 29 ..................................................................... 17
Deleted Table 6 ............................................................................... 17
Changes to Ordering Guide ......................................................... 20
2/07Rev. G to Rev. H
Updated Layout ....................................................................... 9 to 12
Added Applications Section ......................................................... 13
Inserted Figure 21 to Figure 24; Renumbered Sequentially..... 13
Deleted Figure 25 ........................................................................... 15
Added Evaluation Board Section................................................. 16
Inserted Figure 29 to Figure 34; Renumbered Sequentially..... 16
Inserted Figure 35; Renumbered Sequentially ........................... 17
Added Table 6 ................................................................................. 17
2/06Rev. F to Rev. G
Updated Format ................................................................. Universal
Changes to Features ......................................................................... 1
Added Table 3 ................................................................................... 6
Changes to Figure 21 and Figure 22 ........................................... 14
Changes to Figure 23, Figure 24, and Figure 25 ........................ 15
Updated Outline Dimensions ...................................................... 16
Changes to Ordering Guide ......................................................... 17
5/04Rev. E to Rev. F
Changes to Specifications ................................................................ 2
Replaced Figure 18 ........................................................................ 10
Updated Outline Dimensions ...................................................... 16
Changes to Ordering Guide ......................................................... 16
4/03Rev. D to Rev. E
Changes to General Description ................................................. 1
Changes to Specifications ............................................................. 3
Changes to Absolute Maximum Ratings .................................... 4
Changes to Ordering Guide ......................................................... 4
11/02Rev. C to Rev. D
Changes to Functional Block Diagram ....................................... 1
Changes to Pin Configuration ..................................................... 3
Figure 1 Replaced .......................................................................... 6
Changes to Figure 2 ....................................................................... 6
Changes to Application Circuits Figures 4 to 8 ......................... 8
Outline Dimensions Updated ...................................................... 8

AD736JRZ-RL

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Power Management Specialized - PMIC RMS-DC CONVERTER IC Low Cost-Pwr
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union