Datasheet SHT7x
www.sensirion.com Version 5 – December 2011 4/12
1.6 Light
The SHT7x is not light sensitive. Prolonged direct
exposure to sunshine or strong UV radiation may age the
housing.
1.7 Materials Used for Sealing / Mounting
Many materials absorb humidity and will act as a buffer
increasing response times and hysteresis. Materials in the
vicinity of the sensor must therefore be carefully chosen.
Recommended materials are: Any metals, LCP, POM
(Delrin), PTFE (Teflon), PE, PEEK, PP, PB, PPS, PSU,
PVDF, PVF.
For sealing and gluing (use sparingly): Use high filled
epoxy for electronic packaging (e.g. glob top, underfill),
and Silicone. Out-gassing of these materials may also
contaminate the SHT7x (see Section 1.3). Therefore try to
add the sensor as a last manufacturing step to the
assembly, store the assembly well ventilated after
manufacturing or bake at 50°C for 24h to outgas
contaminants before packing.
1.8 Wiring Considerations and Signal Integrity
SHT7x are often applied using wires. Carrying the SCK
and DATA signal parallel and in close proximity more than
10cm may result in cross talk and loss of communication.
This may be resolved by routing VDD and/or GND
between the two data signals and/or using shielded
cables. Furthermore, slowing down SCK frequency will
possibly improve signal integrity.
Please see the Application Note “ESD, Latch-up and
EMC” for more information.
1.9 ESD (Electrostatic Discharge)
ESD immunity is qualified according to MIL STD 883E,
method 3015 (Human Body Model at ±2 kV).
Latch-up immunity is provided at a force current of
±100mA with T
amb
= 80°C according to JEDEC78A. See
Application Note “ESD, Latch-up and EMC” for more
information.
2 Interface Specifications
Pin
Name
Comment
1
SCK
Serial Clock, input only
2
VDD
Source Voltage
3
GND
Ground
4
DATA
Serial Data, bidirectional
Table 1: SHT7x pin assignment.
2.1 Power Pins (VDD, GND)
The supply voltage of SHT7x must be in the range of 2.4
and 5.5V, recommended supply voltage is 3.3V.
Decoupling of VDD and GND by a 100nF capacitor is
integrated on the backside of the sensor packaging.
The serial interface of the SHT7x is optimized for sensor
readout and effective power consumption. The sensor
cannot be addressed by I
2
C protocol, however, the sensor
can be connected to an I
2
C bus without interference with
other devices connected to the bus. Microcontroller must
switch between protocols.
Figure 5: Typical application circuit, including pull up resistor R
P
.
2.2 Serial clock input (SCK)
SCK is used to synchronize the communication between
microcontroller and SHT7x. Since the interface consists of
fully static logic there is no minimum SCK frequency.
2.3 Serial data (DATA)
The DATA tri-state pin is used to transfer data in and out
of the sensor. For sending a command to the sensor,
DATA is valid on the rising edge of the serial clock (SCK)
and must remain stable while SCK is high. After the falling
edge of SCK the DATA value may be changed. For safe
communication DATA valid shall be extended T
SU
and T
HO
before the rising and after the falling edge of SCK,
respectively see Figure 6. For reading data from the
sensor, DATA is valid T
V
after SCK has gone low and
remains valid until the next falling edge of SCK.
To avoid signal contention the microcontroller must only
drive DATA low. An external pull-up resistor (e.g. 10 kΩ) is
required to pull the signal high it should be noted that
pull-up resistors may be included in I/O circuits of
VDD
GND
DATA
SCK
71
B2G
1
2
3
4
Micro-
Controller
(Master)
SHT7x
(Slave)
R
P
10kΩ
B2G
71
1
2
3
4
Datasheet SHT7x
www.sensirion.com Version 5 – December 2011 5/12
microcontrollers. See Table 2 for detailed I/O characteristic
of the sensor.
2.4 Electrical Characteristics
The electrical characteristics such as power consumption,
low and high level, input and output voltages depend on
the supply voltage. Table 2 gives electrical characteristics
of SHT7x with the assumption of 5V supply voltage if not
stated otherwise. For proper communication with the
sensor it is essential to make sure that signal design is
strictly within the limits given in Table 3 and Figure 6.
Absolute maximum ratings for VDD versus GND are +7V
and -0.3V.
Exposure to absolute maximum rating
conditions for extended periods may affect the sensor
reliability (e.g. hot carrier degradation, oxide breakdown).
Parameter
Conditions
min
typ
max
Units
Power supply DC
10
2.4
3.3
5.5
V
Supply current
measuring
0.55
1
mA
average
11
2
28
µA
sleep
0.3
1.5
µA
Low level output
voltage
I
OL
< 4 mA 0 250 mV
High level output
voltage
R
P
< 25 kΩ 90% 100%
VDD
Low level input
voltage
Negative going
0% 20% VDD
High level input
voltage
Positive going 80% 100%
VDD
Input current on
pads
1 µA
Output current
on
4
mA
Tri
-
stated (off)
10
20
µA
Table 2: SHT7x DC characteristics. R
P
stands for pull up
resistor, while I
OL
is low level output current.
Figure 6: Timing Diagram, abbreviations are explained in
Table 3. Bold DATA line is controlled by the sensor, plain DATA
line is controlled by the micro-controller. Note that DATA valid
read time is triggered by falling edge of anterior toggle.
10
Recommended voltage supply for highest accuracy is 3.3V, due to sensor
calibration.
11
Minimum value with one measurement of 8 bit resolution without OTP reload
per second, typical value with one measurement of 12bit resolution per
second.
Parameter Conditions min typ max
Units
F
SCK
SCK Frequency
VDD > 4.5V
0 0.1 5 MHz
VDD < 4.5V
0 0.1 1 MHz
T
SCKx
SCK hi/low time 100
ns
T
R
/T
F
SCK rise/fall time 1 200
* ns
T
FO
DATA fall time
OL = 5pF 3.5 10 20 ns
OL = 100pF
30 40 200
ns
T
RO
DATA rise time ** ** ** ns
T
V
DATA valid time 200
250
*** ns
T
SU
DATA setup time 100
150
*** ns
T
HO
DATA hold time 10 15 **** ns
*
T
R_max
+ T
F_max
= (F
SCK
)
-1
T
SCKH
T
SCKL
**
T
R0
is
determined by the R
P
*C
bus
time
-
constant at DATA line
***
T
V_max
and T
SU_max
depend on external pull
-
up resistor (R
P
) and total bus
line capacitance (Cbus) at DATA line
****
T
H0_max
< T
V
max (T
R0
, T
F0
)
Table 3: SHT7x I/O signal characteristics, OL stands for Output
Load, entities are displayed in Figure 6.
3 Communication with Sensor
3.1 Start up Sensor
As a first step the sensor is powered up to chosen supply
voltage VDD. The slew rate during power up shall not fall
below 1V/ms. After power-up the sensor needs 11ms to
get to Sleep State. No commands must be sent before
that time.
3.2 Sending a Command
To initiate a transmission, a Transmission Start sequence
has to be issued. It consists of a lowering of the DATA line
while SCK is high, followed by a low pulse on SCK and
raising DATA again while SCK is still high – see Figure 7.
Figure 7: "Transmission Start" sequence
The subsequent command consists of three address bits
(only ‘000’ is supported) and five command bits. The
SHT7x indicates the proper reception of a command by
pulling the DATA pin low (ACK bit) after the falling edge of
the 8th SCK clock. The DATA line is released (and goes
high) after the falling edge of the 9th SCK clock.
DATA
SCK
80%
2
0%
80%
2
0%
DATA valid read
DATA valid write
DATA
SCK
80%
2
0%
80%
2
0%
T
V
T
SCKL
T
SU
T
HO
T
SCK
T
SCKH
T
R
T
F
T
RO
T
FO
Datasheet SHT7x
www.sensirion.com Version 5 – December 2011 6/12
Command
Code
Reserved
0000x
Measure
Temperature
00011
Measure Relative Humidity
00101
Read Status Register
00111
Write Status Register
00110
Reserved
0101x
-
1110x
Soft reset,
resets the interface, clears the
status register to default values. Wait minimum
11 ms before next command
11110
Table 4: SHT7x list of commands
3.3 Measurement of RH and T
After issuing a measurement command (‘00000101’ for
relative humidity, ‘00000011’ for temperature) the
controller has to wait for the measurement to complete.
This takes a maximum of 20/80/320 ms for a 8/12/14bit
measurement. The time varies with the speed of the
internal oscillator and can be lower by up to 30%. To
signal the completion of a measurement, the SHT7x pulls
data line low and enters Idle Mode. The controller must
wait for this Data Ready signal before restarting SCK to
readout the data. Measurement data is stored until
readout, therefore the controller can continue with other
tasks and readout at its convenience.
Two bytes of measurement data and one byte of CRC
checksum (optional) will then be transmitted. The micro
controller must acknowledge each byte by pulling the
DATA line low. All values are MSB first, right justified (e.g.
the 5
th
SCK is MSB for a 12bit value, for a 8bit result the
first byte is not used).
Communication terminates after the acknowledge bit of
the CRC data. If CRC-8 checksum is not used the
controller may terminate the communication after the
measurement data LSB by keeping ACK high. The device
automatically returns to Sleep Mode after measurement
and communication are completed.
Important: To keep self heating below 0.1°C, SHT7x
should not be active for more than 10% of the time e.g.
maximum one measurement per second at 12bit accuracy
shall be made.
3.4 Connection reset sequence
If communication with the device is lost the following signal
sequence will reset the serial interface: While leaving
DATA high, toggle SCK nine or more times – see Figure 8.
This must be followed by a Transmission Start sequence
preceding the next command. This sequence resets the
interface only. The status register preserves its content.
Figure 8: Connection Reset Sequence
3.5 CRC-8 Checksum calculation
The whole digital transmission is secured by an 8bit
checksum. It ensures that any wrong data can be detected
and eliminated. As described above this is an additional
feature of which may be used or abandoned. Please
consult Application Note “CRC Checksum” for information
on how to calculate the CRC.
3.6 Status Register
Some of the advanced functions of the SHT7x such as
selecting measurement resolution, end-of-battery notice,
use of OTP reload or using the heater may be activated by
sending a command to the status register. The following
section gives a brief overview of these features.
After the command Status Register Read or Status
Register Write see Table 4 the content of 8 bits of the
status register may be read out or written. For the
communication compare Figure 9 and Figure 10 – the
assignation of the bits is displayed in Table 5.
TS
ACK
Bit 7
ACK
0
0
0
0
0
1
1
0
Status Register
Figure 9: Status Register Write
Figure 10: Status Register Read
Examples of full communication cycle are displayed in
Figure 11 and Figure 12.
TS
Wait for
DATA ready
0
0
0
Command
0
0
MSB
LSb
ACK
ACK
LSB
Checksum
Figure 11: Overview of Measurement Sequence. TS = Trans-
mission Start, MSB = Most Significant Byte, LSB = Last
Significant Byte, LSb = Last Significant Bit.
TS
ACK
Bit 7
ACK
Bit 7
ACK
0
0
0
0
0
1
1
1
Status Register
Checksum
DATA
SCK
80%
2
0%
80%
2
0%
1
2
3
2
4 - 8
9
Transmission Start

SHT71

Mfr. #:
Manufacturer:
Sensirion
Description:
Board Mount Humidity Sensors Humid & Temp Sensor
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet