4
1348FS–ATARM–13-Apr-06
AT91M40800
4. Block Diagram
Figure 4-1. AT91M40800
ARM7TDMI Core
Embedded
ICE
Reset
EBI: External Bus Interface
ASB
Controller
Clock
AIC: Advanced
Interrupt Controller
AMBA Bridge
EBI User
Interface
TC: Timer
Counter
TC0
TC1
TC2
USART0
USART1
2 PDC
Channels
2 PDC
Channels
PIO: Parallel I/O Controller
PS: Power Saving
Chip ID
WD: Watchdog
Timer
APB
ASB
P
I
O
P
I
O
NRST
D0-D15
A1-A19
A0/NLB
NRD/NOE
NWR0/NWE
NWR1/NUB
NWAIT
NCS0
NCS1
P26/NCS2
P27/NCS3
P28/A20/CS7
P29/A21/CS6
P30/A22/CS5
P31/A23/CS4
P0/TCLK0
P3/TCLK1
P6/TCLK2
P1/TIOA0
P2/TIOB0
P4/TIOA1
P5/TIOB1
P7/TIOA2
P8/TIOB2
NWDOVF
TMS
TDO
TDI
TCK
MCKI
P25/MCKO
P12/FIQ
P9/IRQ0
P10/IRQ1
P11/IRQ2
P13/SCK0
P14/TXD0
P15/RXD0
P20/SCK1
P21/TXD1/NTRI
P22/RXD1
P16
P17
P18
P19
P23
P24/BMS
8K-byte RAM
5
1348FS–ATARM–13-Apr-06
AT91M40800
5. Architectural Overview
The AT91M40800 microcontroller integrates an ARM7TDMI with Embedded ICE interface,
memories and peripherals. The architecture consists of two main buses, the Advanced System
Bus (ASB) and the Advanced Peripheral Bus (APB). Designed for maximum performance and
controlled by the memory controller, the ASB interfaces the ARM7TDMI processor with the on-
chip 32-bit memories, the External Bus Interface (EBI) and the AMBA
Bridge. The AMBA
Bridge drives the APB, which is designed for accesses to on-chip peripherals and optimized for
low power consumption.
The AT91M40800 microcontroller implements the ICE port of the ARM7TDMI processor on ded-
icated pins, offering a complete, low cost and easy-to-use debug solution for target debugging.
5.1 Memories
The AT91M40800 microcontroller embeds up to 8K bytes of internal SRAM. The internal mem-
ory is directly connected to the 32-bit data bus and is single-cycle accessible.
The AT91M40800 microcontroller features an External Bus Interface (EBI), which enables con-
nection of external memories and application-specific peripherals. The EBI supports 8- or 16-bit
devices and can use two 8-bit devices to emulate a single 16-bit device. The EBI implements the
early read protocol, enabling faster memory accesses than standard memory interfaces.
5.2 Peripherals
The AT91M40800 microcontrollers integrate several peripherals, which are classified as system
or user peripherals. All on-chip peripherals are 32-bit accessible by the AMBA Bridge, and can
be programmed with a minimum number of instructions. The peripheral register set is composed
of control, mode, data, status and enable/disable/status registers.
An on-chip Peripheral Data Controller (PDC) transfers data between the on-chip USARTs and
on- and off-chip memories address space without processor intervention. Most importantly, the
PDC removes the processor interrupt handling overhead, making it possible to transfer up to
64K contiguous bytes without reprogramming the start address, thus increasing the perfor-
mance of the microcontroller, and reducing the power consumption.
5.2.1 System Peripherals
The External Bus Interface (EBI) controls the external memory or peripheral devices via an 8- or
16-bit databus and is programmed through the APB. Each chip select line has its own program-
ming register.
The Power-saving (PS) module implements the Idle mode (ARM7TDMI core clock stopped until
the next interrupt) and enables the user to adapt the power consumption of the microcontroller to
application requirements (independent peripheral clock control).
The Advanced Interrupt Controller (AIC) controls the internal interrupt sources from the internal
peripherals and the four external interrupt lines (including the FIQ), to provide an interrupt and/or
fast interrupt request to the ARM7TDMI. It integrates an 8-level priority controller and, using the
Auto-vectoring feature, reduces the interrupt latency time.
The Parallel Input/Output Controller (PIO) controls up to 32 I/O lines. It enables the user to
select specific pins for on-chip peripheral input/output functions, and general-purpose input/out-
put signal pins. The PIO controller can be programmed to detect an interrupt on a signal change
from each line.
6
1348FS–ATARM–13-Apr-06
AT91M40800
The Watchdog (WD) can be used to prevent system lock-up if the software becomes trapped in
a deadlock.
The Special Function (SF) module integrates the Chip ID, the Reset Status and the Protect
registers.
5.2.2 User Peripherals
Two USARTs, independently configurable, enable communication at a high baud rate in syn-
chronous or asynchronous mode. The format includes start, stop and parity bits and up to 8 data
bits. Each USART also features a Timeout and a Time Guard register, facilitating the use of the
two dedicated Peripheral Data Controller (PDC) channels.
The 3-channel, 16-bit Timer Counter (TC) is highly-programmable and supports capture or
waveform modes. Each TC channel can be programmed to measure or generate different kinds
of waves, and can detect and control two input/output signals. The TC has also three external
clock signals.
6. Associated Documentation
The AT91M40800 is part of the AT91x40 Series microcontrollers, a member of the Atmel AT91 16/32-bit microcontroller
family which is based on the ARM7TDMI processor core. Table 6-1 contains details of associated documentation for further
reference.
Table 6-1. Associated Documentation
Product Information Document Title
AT91M40800
Internal architecture of processor
ARM/Thumb instruction sets
Embedded in-circuit-emulator
ARM7TDMI (Thumb) Datasheet
External memory interface mapping
Peripheral operations
Peripheral user interfaces
AT91x40 Series Datasheet
DC characteristics
Power consumption
Thermal and reliability considerations
AC characteristics
AT91M40800 Electrical Characteristics
Product overview
Ordering information
Packaging information
Soldering profile
AT91M40800 Summary Datasheet (this document)

AT91M40800-33AU-999

Mfr. #:
Manufacturer:
Microchip Technology / Atmel
Description:
ARM Microcontrollers - MCU Ind. Temp Green
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union