MAX6602
Five-Channel Precision Temperature Monitor
______________________________________________________________________________________ 13
Table 7. Status 1 Register
BIT NAME
POR
STATE
FUNCTION
7 (MSB) Reserved 0
6 Local ALERT 0
Local Channel High-Alert Bit. This bit is set to logic 1 when the local
temperature exceeds the temperature threshold limit in the local ALERT high-
limit register.
5 Reserved 0
4 Reserved 0
3 Remote 4 ALERT 0
Channel 4 Remote-Diode High-Alert Bit. This bit is set to logic 1 when the
channel 4 remote-diode temperature exceeds the temperature threshold limit
in the remote 4 ALERT high-limit register.
2 Remote 3 ALERT 0
Channel 3 Remote-Diode High-Alert Bit. This bit is set to logic 1 when the
channel 3 remote-diode temperature exceeds the programmed temperature
threshold limit in the remote 3 ALERT high-limit register.
1 Remote 2 ALERT 0
Channel 2 Remote-Diode High-Alert Bit. This bit is set to logic 1 when the
channel 2 remote-diode temperature exceeds the temperature threshold limit
in the remote 2 ALERT high-limit register.
0 Remote 1 ALERT 0
Channel 1 Remote-Diode High-Alert Bit. This bit is set to logic 1 when the
channel 1 remote-diode temperature exceeds the temperature threshold limit
in the remote 1 ALERT high-limit register.
BIT NAME
POR
STATE
FUNCTION
7 (MSB) Reserved 0
6 Reserved 0
5 Reserved 0
4 Reserved 0
3 Remote 4 OVERT 0
Channel 4 Remote-Diode Overtemperature Status Bit. This bit is set to logic 1
when the channel 4 remote-diode temperature exceeds the temperature
threshold limit in the remote 4 OVERT high-limit register.
2 Reserved 0
1 Reserved 0
0 Remote 1 OVERT 0
Channel 1 Remote-Diode Overtemperature Status Bit. This bit is set to logic 1
when the channel 1 remote-diode temperature exceeds the temperature
threshold limit in the remote 1 OVERT high-limit register.
Table 8. Status 2 Register
MAX6602
Five-Channel Precision Temperature Monitor
14 ______________________________________________________________________________________
BIT NAME
POR
STATE
FUNCTION
7 (MSB) Reserved 0
6 Reserved 0 Not Used. 0 at POR, then 1.
5 Reserved 0 Not Used. 0 at POR, then 1.
4 Diode fault 4 0
Channel 4 Remote-Diode Fault Bit. This bit is set to 1 when DXP4 and DXN4
are open circuit or when DXP4 is connected to V
CC
.
3 Diode fault 3 0
Channel 3 Remote-Diode Fault Bit. This bit is set to 1 when DXP3 and DXN3
are open circuit or when DXP3 is connected to V
CC
.
2 Diode fault 2 0
Channel 2 Remote-Diode Fault Bit. This bit is set to 1 when DXP2 and DXN2
are open circuit or when DXP2 is connected to V
CC
.
1 Diode fault 1 0
Channel 1 Remote-Diode Fault Bit. This bit is set to 1 when DXP1 and DXN1
are open circuit or when DXP1 is connected to V
CC
.
0 Reserved 0
Table 9. Status 3 Register
Applications Information
Remote-Diode Selection
The MAX6602 directly measures the die temperature of
CPUs and other ICs that have on-chip temperature-
sensing diodes (see the Typical Application Circuit) or
it can measure the temperature of a discrete diode-
connected transistor.
Effect of Ideality Factor
The accuracy of the remote temperature measure-
ments depends on the ideality factor (n) of the remote
“diode” (actually a transistor). The MAX6602 is opti-
mized for n = 1.012. A thermal diode on the substrate
of an IC is normally a pnp with the base and emitter
brought out the collector (diode connection) grounded.
DXP_ must be connected to the anode (emitter) and
DXN_ must be connected to the cathode (base) of this
pnp. If a sense transistor with an ideality factor other
than 1.012 is used, the output data is different from the
data obtained with the optimum ideality factor.
Fortunately, the difference is predictable. Assume a
remote-diode sensor designed for a nominal ideality
factor n
NOMINAL
is used to measure the temperature of
a diode with a different ideality factor n1. The measured
temperature T
M
can be corrected using:
where temperature is measured in Kelvin and
n
NOMIMAL
for the MAX6602 is 1.012. As an example,
assume you want to use the MAX6602 with a CPU that
has an ideality factor of 1.002. If the diode has no
series resistance, the measured data is related to the
real temperature as follows:
For a real temperature of +85°C (358.15K), the mea-
sured temperature is +81.46°C (354.61K), an error of
-3.539°C.
Series Resistance Cancellation
Some thermal diodes on high-power ICs can have
excessive series resistance, which can cause tempera-
ture measurement errors with conventional remote tem-
perature sensors. Channel 1 of the MAX6602 has a
series resistance cancellation feature (enabled by bit 3
of the configuration 1 register) that eliminates the effect
of diode series resistance. Set bit 3 to 1 if the series
resistance is large enough to affect the accuracy of
channel 1. The series resistance cancellation function
increases the conversion time for channel 1 by 125ms.
This feature cancels the bulk resistance of the sensor
and any other resistance in series (wire, contact resis-
tance, etc.). The cancellation range is from 0 to 100Ω.
TT
n
n
TT
ACTUAL M
NOMINAL
MM
=
1
1 012
1 002
1 00998
.
.
(. )
TT
n
n
M ACTUAL
NOMINAL
=
1
MAX6602
Five-Channel Precision Temperature Monitor
______________________________________________________________________________________ 15
Discrete Remote Diodes
When the remote-sensing diode is a discrete transistor,
its collector and base must be connected together.
Table 10 lists examples of discrete transistors that are
appropriate for use with the MAX6602. The transistor
must be a small-signal type with a relatively high for-
ward voltage; otherwise, the A/D input voltage range
can be violated. The forward voltage at the highest
expected temperature must be greater than 0.25V at
10µA, and at the lowest expected temperature, the for-
ward voltage must be less than 0.95V at 100µA. Large
power transistors must not be used. Also, ensure that
the base resistance is less than 100Ω. Tight specifica-
tions for forward current gain (50 < ß < 150, for exam-
ple) indicate that the manufacturer has good process
controls and that the devices have consistent V
BE
char-
acteristics. Manufacturers of discrete transistors do not
normally specify or guarantee ideality factor. This is
normally not a problem since good-quality discrete
transistors tend to have ideality factors that fall within a
relatively narrow range. We have observed variations in
remote temperature readings of less than ±2°C with a
variety of discrete transistors. Still, it is good design
practice to verify good consistency of temperature
readings with several discrete transistors from any
manufacturer under consideration.
Unused Diode Channels
If one or more of the remote diode channels is not
needed, the DXP and DXN inputs for that channel
should either be unconnected, or the DXP input should
be connected to V
CC
. The status register indicates a
diode "fault" for this channel and the channel is ignored
during the temperature-measurement sequence. It is
also good practice to mask any unused channels
immediately upon power-up by setting the appropriate
bits in the Configuration 2 and Configuration 3 regis-
ters. This will prevent unused channels from causing
ALERT# or OVERT# to assert.
Thermal Mass and Self-Heating
When sensing local temperature, the MAX6602 mea-
sures the temperature of the printed-circuit board (PCB)
to which it is soldered. The leads provide a good ther-
mal path between the PCB traces and the die. As with
all IC temperature sensors, thermal conductivity
between the die and the ambient air is poor by compari-
son, making air temperature measurements impractical.
Because the thermal mass of the PCB is far greater than
that of the MAX6602, the device follows temperature
changes on the PCB with little or no perceivable delay.
When measuring the temperature of a CPU or other IC
with an on-chip sense junction, thermal mass has virtu-
ally no effect; the measured temperature of the junction
tracks the actual temperature within a conversion cycle.
When measuring temperature with discrete remote
transistors, the best thermal response times are
obtained with transistors in small packages (i.e., SOT23
or SC70). Take care to account for thermal gradients
between the heat source and the sensor, and ensure
that stray air currents across the sensor package do
not interfere with measurement accuracy. Self-heating
does not significantly affect measurement accuracy.
Remote-sensor self-heating due to the diode current
source is negligible.
ADC Noise Filtering
The integrating ADC has good noise rejection for low-
frequency signals, such as power-supply hum. In envi-
ronments with significant high-frequency EMI, connect
an external 2200pF capacitor between DXP_ and
DXN_. Larger capacitor values can be used for added
filtering, but do not exceed 3300pF because it can
introduce errors due to the rise time of the switched
current source. High-frequency noise reduction is
needed for high-accuracy remote measurements.
Noise can be reduced with careful PCB layout as dis-
cussed in the PCB Layout section.
MANUFACTURER MODEL NO.
Central Semiconductor (USA) CMPT3904
Rohm Semiconductor (USA) SST3904
Samsung (Korea) KST3904-TF
Siemens (Germany) SMBT3904
Zetex (England) FMMT3904CT-ND
Table 10. Remote-Sensors Transistor
Manufacturers
Note: Discrete transistors must be diode connected (base
shorted to collector).

MAX6602UE9A+

Mfr. #:
Manufacturer:
Maxim Integrated
Description:
Board Mount Temperature Sensors 5Ch Precision Temperature Monitor
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet