DS1023
4 of 16
For highest accuracy it is strongly recommended that the reference delay is used. Variations in input
voltage levels and transition times can significantly alter the measured delay from input to output. This
effect is totally removed if the reference delay output is used. Furthermore, adverse effects on step zero
delay caused by process temperature coefficients are also cancelled out.
INPUT PULSE DURATION
The internal architecture of the DS1023 allows the output delay time to be considerably longer than the
input pulse width (see ac specifications). This feature is useful in many applications, in particular clock
phase control where delays up to and beyond one full clock period can be achieved.
MODE SELECT
The DS1023 has four possible output functions but only two output pins. The functionality of the two
output pins is determined by the Mode Select (MS) pin.
MS = 0 Figure 3
Output Function Name Pin Number
Reference Output REF 9
Delayed Output OUT 15
OUT is a copy of the input waveform that is delayed by an amount set by the programmed values (Table
1). A programmed value of zero will still result in a non-zero delay as indicated in the Step Zero delay
specification. The signal on OUT is the same polarity as the input.
REF is a fixed reference delay. It also is a copy of the input waveform but the delay interval is fixed to a
value approximately equal to the Step Zero Value of the device (as shown in the Reference Delay
specification). In fact the device is trimmed to ensure that the Reference Delay is always slightly longer
than the Step Zero Value (by 1.5 ns typically).
DS1023
5 of 16
MS = 1 Figure 4
Output Function Name Pin Number
Pulse Width Modulated Output PWM 9
Delayed and Inverted Output
OUT
15
PWM is an output triggered by the rising edge of the input waveform. After a time interval approximately
equal to the Step Zero delay of the device the PWM output will go high. The output will return to a low
level after a time interval determined by the programmed values (Table 1). Hence output pulse widths can
be obtained from (nearly) zero to the full delay range of the device. In practice the minimum output pulse
width is limited by the response time of the device to approximately 5ns. Programmed values less than
this will result in degradation of the output high level voltage until ultimately no discernible output pulse
is produced. The frequency/repetition rate of the output is determined by the input frequency. The input
pulse width can be shorter than the output pulse width, and is limited only by the minimum input pulse
width specification. The PWM function is not “re-triggerable”, subsequent input trigger pulses should
not be present until the output has returned to a low level.
OUT is an inverted copy of the input waveform that is delayed by an amount set by the programmed
values (Table 1). A programmed value of zero will still result in a non-zero delay as indicated in the Step
Zero delay specification. The OUT pin may also be externally connected to the input pin to produce a
free-running oscillator. The frequency of oscillation is determined by the programmed delay value of the
device (see Table 2).
DS1023
6 of 16
FUNCTIONAL BLOCK DIAGRAM Figure 5
DELAY LINE DETAIL (CONCEPTUAL) - DS1023-200, DS1023-500 Figure 6

DS1023S-25+W

Mfr. #:
Manufacturer:
Maxim Integrated
Description:
Delay Lines / Timing Elements Programmable 8-Bit .25ns Timing Element
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union