16
FN9123.3
November 8, 2004
Component Selection Guidelines
MOSFET Considerations
The logic level MOSFETs are chosen for optimum efficiency
given the potentially wide input voltage range and output
power requirements. Two N-Channel MOSFETs are used in
each of the synchronous-rectified buck converters for the
PWM1 and PWM2 outputs. These MOSFETs should be
selected based upon r
DS(ON)
, gate supply requirements,
and thermal management considerations.
The power dissipation includes two loss components;
conduction loss and switching loss. These losses are
distributed between the upper and lower MOSFETs
according to duty cycle (see the following equations). The
conduction losses are the main component of power
dissipation for the lower MOSFETs. Only the upper MOSFET
has significant switching losses, since the lower device turns
on and off into near zero voltage. The equations assume
linear voltage-current transitions and do not model power
loss due to the reverse-recovery of the lower MOSFET’s
body diode.
A large gate-charge increases the switching time, t
SW
,
which increases the upper MOSFET switching losses.
Ensure that both MOSFETs are within their maximum
junction temperature at high ambient temperature by
calculating the temperature rise according to package
thermal-resistance specifications.
Output Capacitor Selection
The output capacitors for each output have unique
requirements. In general, the output capacitors should be
selected to meet the dynamic regulation requirements
including ripple voltage and load transients. Selection of
output capacitors is also dependent on the output inductor,
so some inductor analysis is required to select the output
capacitors.
One of the parameters limiting the converter’s response to a
load transient is the time required for the inductor current to
slew to it’s new level. The ISL6402 will provide either 0% or
71% duty cycle in response to a load transient.
The response time is the time interval required to slew the
inductor current from an initial current value to the load
current level. During this interval the difference between the
inductor current and the transient current level must be
supplied by the output capacitor(s). Minimizing the response
time can minimize the output capacitance required. Also, if
the load transient rise time is slower than the inductor
response time, as in a hard drive or CD drive, it reduces the
requirement on the output capacitor.
The maximum capacitor value required to provide the full,
rising step, transient load current during the response time of
the inductor is:
where, C
OUT
is the output capacitor(s) required, L
O
is the
output inductor, I
TRAN
is the transient load current step, V
IN
is the input voltage, V
O
is output voltage, and DV
OUT
is the
drop in output voltage allowed during the load transient.
High frequency capacitors initially supply the transient
current and slow the load rate-of-change seen by the bulk
capacitors. The bulk filter capacitor values are generally
determined by the ESR (Equivalent Series Resistance) and
voltage rating requirements as well as actual capacitance
requirements.
The output voltage ripple is due to the inductor ripple current
and the ESR of the output capacitors as defined by:
where, I
L
is calculated in the Inductor Selection section.
High frequency decoupling capacitors should be placed as
close to the power pins of the load as physically possible. Be
careful not to add inductance in the circuit board wiring that
could cancel the usefulness of these low inductance
components. Consult with the manufacturer of the load
circuitry for specific decoupling requirements.
Use only specialized low-ESR capacitors intended for
switching-regulator applications at 300kHz for the bulk
capacitors. In most cases, multiple small-case electrolytic
capacitors perform better than a single large-case capacitor.
The stability requirement on the selection of the output
capacitor is that the ‘ESR zero’, f
Z
, be between 1.2kHz and
30kHz. This range is set by an internal, single compensation
zero at 6kHz. The ESR zero can be a factor of five on either
side of the internal zero and still contribute to increased
phase margin of the control loop. Therefore,
In conclusion, the output capacitors must meet three criteria:
1. They must have sufficient bulk capacitance to sustain the
output voltage during a load transient while the output
inductor current is slewing to the value of the load
transient,
2. The ESR must be sufficiently low to meet the desired
output voltage ripple due to the output inductor current,
and
3. The ESR zero should be placed, in a rather large range,
to provide additional phase margin.
P
UPPER
I
O
2
()r
DS ON()
()V
OUT
()
V
IN
---------------------------------------------------------------
I
O
()V
IN
()t
SW
()F
SW
()
2
------------------------------------------------------------+=
P
LOWER
I
O
2
()r
DS ON()
()V
IN
V
OUT
()
V
IN
-------------------------------------------------------------------------------=
C
OUT
L
O
()I
TRAN
()
2
2V
IN
V
O
()DV
OUT
()
---------------------------------------------------------- -=
V
RIPPLE
I
L
ESR()=
C
OUT
1
2Π ESR()f
Z
()
-------------------------------------=
ISL6402
17
FN9123.3
November 8, 2004
The recommended output capacitor value for the ISL6402 is
between 150µF to 680µF, to meet stability criteria with
external compensation. Use of aluminum electrolytic,
POSCAP, or tantalum type capacitors is recommended. Use
of low ESR ceramic capacitors is possible but would take
more rigorous loop analysis to ensure stability.
Output Inductor Selection
The PWM converters require output inductors. The output
inductor is selected to meet the output voltage ripple
requirements. The inductor value determines the converter’s
ripple current and the ripple voltage is a function of the ripple
current and output capacitor(s) ESR. The ripple voltage
expression is given in the capacitor selection section and the
ripple current is approximated by the following equation:
For the ISL6402, use Inductor values between 1µH to 3.3µH.
Input Capacitor Selection
The important parameters for the bulk input capacitor(s) are
the voltage rating and the RMS current rating. For reliable
operation, select bulk input capacitors with voltage and
current ratings above the maximum input voltage and largest
RMS current required by the circuit. The capacitor voltage
rating should be at least 1.25 times greater than the
maximum input voltage and 1.5 times is a conservative
guideline. The AC RMS Input current varies with the load.
The total RMS current supplied by the input capacitance is:
where,
DC is duty cycle of the respective PWM.
Depending on the specifics of the input power and its
impedance, most (or all) of this current is supplied by the
input capacitor(s). Figure 22 shows the advantage of having
the PWM converters operating out of phase. If the
converters were operating in phase, the combined RMS
current would be the algebraic sum, which is a much larger
value as shown. The combined out-of-phase current is the
square root of the sum of the square of the individual
reflected currents and is significantly less than the combined
in-phase current.
Use a mix of input bypass capacitors to control the voltage
ripple across the MOSFETs. Use ceramic capacitors for the
high frequency decoupling and bulk capacitors to supply the
RMS current. Small ceramic capacitors can be placed very
close to the upper MOSFET to suppress the voltage induced
in the parasitic circuit impedances.
For board designs that allow through-hole components, the
Sanyo OS-CON® series offer low ESR and good
temperature performance. For surface mount designs, solid
tantalum capacitors can be used, but caution must be
exercised with regard to the capacitor surge current rating.
These capacitors must be capable of handling the surge-
current at power-up. The TPS series available from AVX is
surge current tested.
I
L
V
IN
V
OUT
()V
OUT
()
f
S
()L()V
IN
()
----------------------------------------------------------=
I
RMS
I
RMS1
2
I
RMS2
2
+=
I
RMSx
DC DC
2
=
FIGURE 22. INPUT RMS CURRENT vs LOAD
12345
3.3V AND 5V LOAD CURRENT
INPUT RMS CURRENT
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
0
IN PHASE
OUT OF PHASE
5V
3.3V
ISL6402
18
FN9123.3
November 8, 2004
ISL6402
Quad Flat No-Lead Plastic Package (QFN)
Micro Lead Frame Plastic Package (MLFP)
INDEX
D1/2
D1
D/2
D
E1/2
E/2
E
A
2X
0.15
B
C
0.10 BAMC
A
N
SEATING PLANE
N
6
3
2
2
3
e
1
1
0.08
FOR ODD TERMINAL/SIDE FOR EVEN TERMINAL/SIDE
CC
SECTION "C-C"
NX b
A1
C
2X
C
0.15
0.15
2X
B
0
REF.
(Nd-1)Xe
(Ne-1)Xe
REF.
5
A1
4X P
A
C
C
4X P
B
2X
AC0.15
A2
A3
D2
D2
E2
E2/2
TERMINAL TIP
SIDE VIEW
TOP VIEW
7
BOTTOM VIEW
7
5
C
L
C
L
e
e
E1
2
NX k
NX b
8
NX L
8
8
9
AREA
9
4X
0.10 C
/ /
9
(DATUM B)
(DATUM A)
AREA
INDEX
6
AREA
N
9
CORNER
OPTION 4X
L1
L
10
L1
L
10
L28.5x5
28 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE
(COMPLIANT TO JEDEC MO-220VHHD-1 ISSUE C)
SYMBOL
MILLIMETERS
NOTESMIN NOMINAL MAX
A 0.80 0.90 1.00 -
A1 - - 0.05 -
A2 - - 1.00 9
A3 0.20 REF 9
b 0.18 0.23 0.30 5,8
D 5.00 BSC -
D1 4.75 BSC 9
D2 2.95 3.10 3.25 7,8
E 5.00 BSC -
E1 4.75 BSC 9
E2 2.95 3.10 3.25 7,8
e 0.50 BSC -
k0.25 - - -
L 0.50 0.60 0.75 8
L1 - - 0.15 10
N282
Nd 7 3
Ne 8 7 3
P- -0.609
θ --129
Rev. 0 02/03
NOTES:
1. Dimensioning and tolerancing conform to ASME Y14.5-1994.
2. N is the number of terminals.
3. Nd and Ne refer to the number of terminals on each D and E.
4. All dimensions are in millimeters. Angles are in degrees.
5. Dimension b applies to the metallized terminal and is measured
between 0.15mm and 0.30mm from the terminal tip.
6. The configuration of the pin #1 identifier is optional, but must be
located within the zone indicated. The pin #1 identifier may be
either a mold or mark feature.
7. Dimensions D2 and E2 are for the exposed pads which provide
improved electrical and thermal performance.
8. Nominal dimensions are provided to assist with PCB Land Pattern
Design efforts, see Intersil Technical Brief TB389.
9. Features and dimensions A2, A3, D1, E1, P & θ are present when
Anvil singulation method is used and not present for saw
singulation.
10. Depending on the method of lead termination at the edge of the
package, a maximum 0.15mm pull back (L1) maybe present. L
minus L1 to be equal to or greater than 0.3mm.

ISL6402IVZ

Mfr. #:
Manufacturer:
Renesas / Intersil
Description:
IC REG TRPL BCK/LNR SYNC 28TSSOP
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union