13
Figure 23. Motor output horsepower vs. motor phase current and supply
voltage.
The rst step in selecting a sense resistor is determining
how much current the resistor will be sensing. The graph in
Figure 23 shows the RMS current in each phase of a three-
phase induction motor as a function of average motor
output power (in horsepower, hp) and motor drive supply
voltage. The maximum value of the sense resistor is deter-
mined by the current being measured and the maximum
recommended input voltage of the isolation amplier. The
maximum sense resistance can be calculated by taking
the maximum recommended input voltage and dividing
by the peak current that the sense resistor should see
during normal operation. For example, if a motor will have
a maximum RMS current of 10 A and can experience up
to 50% overloads during normal operation, then the peak
current is 21.1 A (=10 x 1.414 x 1.5). Assuming a maximum
input voltage of 200 mV, the maximum value of sense re-
sistance in this case would be about 10 mΩ.
The maximum average power dissipation in the sense
resistor can also be easily calculated by multiplying the
sense resistance times the square of the maximum RMS
current, which is about 1 W in the previous example. If
the power dissipation in the sense resistor is too high, the
resistance can be decreased below the maximum value
to decrease power dissipation. The minimum value of the
sense resistor is limited by precision and accuracy require-
ments of the design. As the resistance value is reduced,
the output voltage across the resistor is also reduced,
which means that the oset and noise, which are xed,
become a larger percentage of the signal amplitude. The
selected value of the sense resistor will fall somewhere
between the minimum and maximum values, depending
on the particular requirements of a specic design.
When sensing currents large enough to cause signicant
heating of the sense resistor, the temperature coecient
(tempco) of the resistor can introduce nonlinearity due to
the signal dependent temperature rise of the resistor. The
eect increases as the resistor-to-ambient thermal resis-
MOTOR PHASE CURRENT - A (rms)
15
5
40
10 25 30
0
35
0 35
25
10
20
440 V
380 V
220 V
120 V
30
20
5
15
MOTOR OUTPUT POWER - HORSEPOWER
tance increases. This eect can be minimized by reducing
the thermal resistance of the current sensing resistor or
by using a resistor with a lower tempco. Lowering the
thermal resistance can be accomplished by reposition-
ing the current sensing resistor on the PC board, by using
larger PC board traces to carry away more heat, or by
using a heat sink.
For a two-terminal current sensing resistor, as the value of
resistance decreases, the resistance of the leads become a
signicant percentage of the total resistance. This has two
primary eects on resistor accuracy. First, the eective
resistance of the sense resistor can become dependent
on factors such as how long the leads are, how they are
bent, how far they are inserted into the board, and how far
solder wicks up the leads during assembly (these issues
will be discussed in more detail shortly). Second, the leads
are typically made from a material, such as copper, which
has a much higher tempco than the material from which
the resistive element itself is made, resulting in a higher
tempco overall.
Both of these eects are eliminated when a four-terminal
current sensing resistor is used. A four-terminal resistor has
two additional terminals that are Kelvin connected directly
across the resistive element itself; these two terminals are
used to monitor the voltage across the resistive element
while the other two terminals are used to carry the load
current. Because of the Kelvin connection, any voltage
drops across the leads carrying the load current should
have no impact on the measured voltage.
When laying out a PC board for the current sensing
resistors, a couple of points should be kept in mind. The
Kelvin connections to the resistor should be brought
together under the body of the resistor and then run very
close to each other to the input of the ACPL-C79B/C79A/
C790; this minimizes the loop area of the connection and
reduces the possibility of stray magnetic elds from inter-
fering with the measured signal. If the sense resistor is not
located on the same PC board as the isolation amplier
circuit, a tightly twisted pair of wires can accomplish the
same thing.
Also, multiple layers of the PC board can be used to
increase current carrying capacity. Numerous plated-
through vias should surround each non-Kelvin terminal of
the sense resistor to help distribute the current between
the layers of the PC board. The PC board should use 2 or
4 oz. copper for the layers, resulting in a current carrying
capacity in excess of 20 A. Making the current carrying
traces on the PC board fairly large can also improve the
sense resistor’s power dissipation capability by acting as a
heat sink. Liberal use of vias where the load current enters
and exits the PC board is also recommended.
For product information and a complete list of distributors, please go to our web site: www.avagotech.com
Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2015 Avago Technologies. All rights reserved.
AV02-2460EN - October 23, 2015
Output Side
The op-amp used in the external post-amplier circuit
should be of suciently high precision so that it does not
contribute a signicant amount of oset or oset drift
relative to the contribution from the isolation amplier.
Generally, op-amps with bipolar input stages exhibit
better oset performance than op-amps with JFET or
MOSFET input stages.
In addition, the op-amp should also have enough
bandwidth and slew rate so that it does not adversely
aect the response speed of the overall circuit. The post-
amplier circuit includes a pair of capacitors (C5 and C6)
that form a single-pole low-pass lter; these capacitors
allow the bandwidth of the post-amp to be adjusted in-
dependently of the gain and are useful for reducing the
output noise from the isolation amplier.
The gain-setting resistors in the post-amp should have a
tolerance of 1% or better to ensure adequate CMRR and
adequate gain tolerance for the overall circuit. Resistor
networks can be used that have much better ratio toler-
ances than can be achieved using discrete resistors. A
resistor network also reduces the total number of compo-
nents for the circuit as well as the required board space.
Voltage Sensing
The ACPL-C79B/C79A/C790 can also be used to isolate
signals with amplitudes larger than its recommended
input range with the use of a resistive voltage divider at
its input. The only restrictions are that the impedance of
the divider be relatively small (less than 1 kΩ) so that the
input resistance (22 kΩ) and input bias current (0.1 µA)
do not aect the accuracy of the measurement. An input
bypass capacitor is still required, although the 10 Ω series
damping resistor is not (the resistance of the voltage
divider provides the same function). The low-pass lter
formed by the divider resistance and the input bypass
capacitor may limit the achievable bandwidth.
V
IN+
V
IN
V
DD1
GND1
5 V
+Input
–Input
Ra
Rb
C
ACPL-C79B/
ACPL-C79A/
ACPL-C790
Figure 24. Simplied dierential input connection diagram.
Shunt Resistor Connections
The typical method for connecting the ACPL-C79B/C79A/
C790 to the current sensing resistor is shown in Figure 21.
V
IN
+ (pin 2) is connected to the positive terminal of the
sense resistor, while V
IN
– (pin 3) is shorted to GND1 (pin
4), with the power-supply return path functioning as the
sense line to the negative terminal of the current sense
resistor. This allows a single pair of wires or PC board traces
to connect the isolation amplier circuit to the sense
resistor. By referencing the input circuit to the negative
side of the sense resistor, any load current induced noise
transients on the resistor are seen as a common-mode
signal and will not interfere with the current-sense signal.
This is important because the large load currents owing
through the motor drive, along with the parasitic induc-
tances inherent in the wiring of the circuit, can generate
both noise spikes and osets that are relatively large
compared to the small voltages that are being measured
across the current sensing resistor.
If the same power supply is used both for the gate drive
circuit and for the current sensing circuit, it is very important
that the connection from GND1 of the ACPL-C79B/C79A/
C790 to the sense resistor be the only return path for supply
current to the gate drive power supply in order to eliminate
potential ground loop problems. The only direct connec-
tion between the ACPL-C79B/C79A/C790 circuit and the
gate drive circuit should be the positive power supply line.
Dierential Input Connection
The dierential analog inputs of the ACPL-C79B/C79A/
C790 are implemented with a fully-dierential, switched-
capacitor circuit. In the typical application circuit (Figure
21), the isolation amplier is connected in a single-ended
input mode. Given the fully dierential input structure,
a dierential input connection method (balanced input
mode as shown in Figure 24) is recommended to achieve
better performance. The input currents created by the
switching actions on both of the pins are balanced on
the lter resistors and cancelled out each other. Any noise
induced on one pin will be coupled to the other pin by the
capacitor C and creates only common mode noise which
is rejected by the device. Typical value for Ra and Rb is
10 Ω and 22 nF for C.

ACPL-C79A-500E

Mfr. #:
Manufacturer:
Broadcom / Avago
Description:
Optically Isolated Amplifiers Precision Iso-Amp
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union