1.3.5.2 Changing Cs, Cx
The values of Cs and Cx have a dramatic effect on
sensitivity, and Cs can be easily increased in value to
improve gain. Sensitivity is directly proportional to Cs and
inversely proportional to Cx:
S =
k$C
S
C
X
Where ‘k’ depends on a variety of factors including the gain
pin setting (see prior section), Vdd, etc.
Sensitivity plots are shown in Figures 4-1 and 4-2, page 10.
1.3.5.3 Electrode / Panel Adjustments
Sensitivity can often be increased by using a bigger
electrode, or reducing overlying panel thickness. Increasing
electrode size can have a diminishing effect on gain, as the
attendant higher values of Cx will start to reduce sensor gain.
Also, increasing the electrode's surface area will not
substantially increase touch sensitivity if its diameter is
already much larger in surface area than the object being
detected.
The panel or other intervening material can be made thinner,
but again there are diminishing rewards for doing so. Panel
material can also be changed to one having a higher
dielectric constant, which will help propagate the field through
to the front. Locally adding some conductive material to the
panel (conductive materials essentially have an infinite
dielectric constant) will also help; for example, adding carbon
or metal fibers to a plastic panel will greatly increase frontal
field strength, even if the fiber density is too low to make the
plastic bulk-conductive.
1.3.5.3 Ground Planes
Grounds around and under the electrode and its SNS trace
will cause high Cx loading and destroy gain. The possible
signal-to-noise ratio benefits of ground area are more than
negated by the decreased gain from the circuit, and so
ground areas around electrodes are discouraged. Keep
ground, power, and other signals traces away from the
electrodes and SNS wiring
2 - QT118HA SPECIFICS
2.1 SIGNAL PROCESSING
The QT118HA digitally processes all signals
using a number of algorithms pioneered by
Quantum. The algorithms are specifically
designed to provide for high survivability in the
face of all kinds of adverse environmental
changes.
2.1.1 DRIFT COMPENSATION ALGORITHM
Signal drift can occur because of changes in Cx
and Cs over time. It is crucial that drift be
compensated for, otherwise false detections,
non-detections, and sensitivity shifts will follow.
Drift compensation (Figure 2-1) is performed by making the
reference level track the raw signal at a slow rate, but only
while there is no detection in effect. The rate of adjustment
must be performed slowly, otherwise legitimate detections
could be ignored. The QT118HA drift compensates using a
slew-rate limited change to the reference level; the threshold
and hysteresis values are slaved to this reference.
Once an object is sensed, the drift compensation mechanism
ceases since the signal is legitimately high, and therefore
should not cause the reference level to change.
The QT118HA's drift compensation is 'asymmetric': the
reference level drift-compensates in one direction faster than
it does in the other. Specifically, it compensates faster for
decreasing signals than for increasing signals. Increasing
signals should not be compensated for quickly, since an
approaching finger could be compensated for partially or
entirely before even touching the sense pad. However, an
obstruction over the sense pad, for which the sensor has
already made full allowance for, could suddenly be removed
leaving the sensor with an artificially elevated reference level
and thus become insensitive to touch. In this latter case, the
sensor will compensate for the object's removal very quickly,
usually in only a few seconds.
2.1.2 THRESHOLD AND HYSTERESIS
The internal signal threshold level can be set to one of three
settings (Table 1-1). These are fixed with respect to the
internal reference level, which in turn moves in accordance
with the drift compensation mechanism.
The QT118HA employs a hysteresis dropout below the
threshold level of 17% of the delta between the reference and
threshold levels.
2.1.3 MAX ON-DURATION
If an object or material obstructs the sense pad the signal
may rise enough to create a detection, preventing further
operation. To prevent this, the sensor includes a timer which
monitors detections. If a detection exceeds the timer setting,
the timer causes the sensor to perform a full recalibration.
This is known as the Max On-Duration feature.
After the Max On-Duration interval, the sensor will once again
function normally, even if partially or fully obstructed, to the
best of its ability given electrode conditions. There are two
timeout durations available via strap option: 10 and 60
seconds.
2.1.4 DETECTION INTEGRATOR
It is desirable to suppress detections generated by electrical
noise or from quick brushes with an object. To accomplish
l
ll
lq
qq
q 4 QT118HA_AR1.02_0408
Pin 7
Low
Pin 6
Medium
Leave open
High
Tie Pin 5 to:Gain
Table 1-1 Gain Strap Options
Figure 2-1 Drift Compensation
Threshold
Signal
Hysteresis
Reference
Output
this, the QT118HA incorporates a detect integration counter
that increments with each detection until a limit is reached,
after which the output is activated. If no detection is sensed
prior to the final count, the counter is reset immediately to
zero. The required count is 4.
The Detection Integrator can also be viewed as a 'consensus'
filter, that requires four detections in four successive bursts to
create an output. As the basic burst spacing is 95ms, if this
spacing was maintained through 4 consecutive bursts the
sensor would be very slow to respond. In the QT118HA, after
an initial detection is sensed, the remaining three bursts are
spaced only about 2ms apart, so that the slowest reaction
time possible is the fastest possible.
2.1.5 FORCED SENSOR RECALIBRATION
The QT118HA has no recalibration pin; a forced recalibration
is accomplished only when the device is powered up.
However, the supply drain is so low it is a simple matter to
treat the entire IC as a controllable load; simply driving the
QT118HA's Vdd pin directly from another logic gate or a
microprocessor port (Figure 2-2) will serve as both power and
'forced recal'. The source resistance of most CMOS gates
and microprocessors is low enough to provide direct power
without any problems. Almost any CMOS logic gate can
directly power the QT118HA.
A 0.01uF minimum bypass capacitor close to the device is
essential; without it the device can break into high frequency
oscillation.
Option strap configurations are read by the QT118HA only on
powerup. Configurations can only be changed by powering
the QT118HA down and back up again; a microcontroller can
directly alter most of the configurations and cycle power to
put them in effect.
2.2 OUTPUT FEATURES
The QT118HA is designed for maximum flexibility and can
accommodate most popular sensing requirements. These
are selectable using strap options on pins OPT1 and OPT2.
All options are shown in Table 2-1.
OPT1 and OPT2 should never be left floating. If they are
floated, the device will draw excess power and the options
will not be properly read on powerup. Intentionally, there are
no pullup resistors on these lines, since pullup resistors add
to power drain if the pin(s) are tied low.
2.2.1 DC MODE OUTPUT
The output of the device can respond in a ‘DC mode’, where
the output is active-high upon detection. The output will
remain active for the duration of the detection, or until the
Max On-Duration expires, whichever occurs first. If the latter
occurs first, the sensor performs a full recalibration and the
output becomes inactive until the next detection.
In this mode, two nominal Max On-Duration timeouts are
available: 10 and 60 seconds.
2.2.2 TOGGLE MODE OUTPUT
This makes the sensor respond in an on/off mode like a flip
flop. It is most useful for controlling power loads, for example
in kitchen appliances, power tools, light switches, etc.
Max On-Duration in Toggle mode is fixed at 10 seconds.
When a timeout occurs, the sensor recalibrates but leaves
the output state unchanged.
10sVddGnd
Pulse
10sGndGnd
Toggle
60sGndVdd
DC Out
10sVddVdd
DC Out
Max On-
Duration
Tie
Pin 4 to:
Tie
Pin 3 to:
Table 2-1 Output Mode Strap Options
2.2.3 PULSE MODE OUTPUT
This generates a positive pulse of 95ms duration with every
new detection. It is most useful for 2-wire operation (see
Figure 1-2), but can also be used when bussing together
several devices onto a common output line with the help of
steering diodes or logic gates, in order to control a common
load from several places.
Max On-Duration is fixed at 10 seconds if in Pulse output
mode.
The piezo beeper drive does not operate in Pulse mode.
2.2.4 HEARTBEAT™ OUTPUT
The output has a full-time HeartBeat™ ‘health’ indicator
superimposed on it. This operates by taking 'Out' into a
tri-state mode for 350µs once before every QT burst. This
output state can be used to determine that the sensor is
operating properly, or, it can be ignored using one of several
simple methods.
Since Out is normally low, a pullup resistor will create positive
HeartBeat pulses (Figure 2-3) when the sensor is not
detecting an object; when detecting an object, the output will
remain active for the duration of the detection, and no
HeartBeat pulse will be evident.
If the sensor is wired to a microcontroller as shown in Figure
2-4, the controller can reconfigure the load resistor to either
ground or Vcc depending on the output state of the device,
so that the pulses are evident in either state.
Electromechanical devices will usually ignore this short
pulse. The pulse also has too low a duty cycle to visibly
activate LED’s. It can be filtered completely if desired, by
adding an RC timeconstant to filter the output, or if interfacing
directly and only to a high-impedance CMOS input, by doing
nothing or at most adding a small non-critical capacitor from
Out to ground (Figure 2-5).
l
ll
lq
qq
q 5 QT118HA_AR1.02_0408
Figure 2-2 Powering From a CMOS Port Pin
0.01µF
CMO S
mic rocon troller
OU T
PORT X.m
PORT X.n
Vdd
Vss
QT118
QT118HA
2.2.5 PIEZO ACOUSTIC DRIVE
A piezo drive signal is generated for use with a piezo sounder
immediately after a detection is made; the tone lasts for a
nominal 95ms to create a ‘tactile feedback’ sound.
The sensor drives the piezo using an H-bridge configuration
for the highest possible sound level. The piezo is connected
across pins SNS1 and SNS2 in place of Cs or in addition to a
parallel Cs capacitor. The piezo sounder should be selected
to have a peak acoustic output in the 3.5kHz to 4.5kHz
region.
Since piezo sounders are merely high-K ceramic capacitors,
the sounder will double as the Cs capacitor, and the piezo's
metal disc can even act as the sensing electrode. Piezo
transducer capacitances typically range from 6nF to 30nF in
value; at the lower end of this range an additional capacitor
should be added to bring the total Cs across SNS1 and
SNS2 to at least 10nF, or possibly more if Cx is above 5pF.
Piezo sounders have very high, uncharacterized thermal
coefficients and should not be used if fast temperature
swings are anticipated, especially at high gains. They are
also generally unstable at high gains; even if the total value
of Cs is largely from an added capacitor the piezo can cause
periodic false detections.
The burst acquisition process induces a small but audible
voltage step across the piezo resonator, which occurs when
SNS1 and SNS2 rapidly discharge residual voltage stored on
the resonator. The resulting slight clicking sound can be
greatly reduced by placing a 470K resistor Rs in parallel with
the resonator; this acts to slowly discharge the resonator,
attenuating of the harmonic-rich audible step (Figure 2-6).
Note that the piezo drive does not operate in Pulse mode.
2.2.6 OUTPUT DRIVE
The QT118HA’s output is active high and it can source or
sink 1mA of non-inductive current.
Care should be taken when the IC and the load are both
powered from the same supply, and the supply is minimally
regulated. The device derives its internal references from the
power supply, and sensitivity shifts can occur with changes in
Vdd, as happens when loads are switched on. This can
induce detection ‘cycling’, whereby an object is detected, the
load is turned on, the supply sags, the detection is no longer
sensed, the load is turned off, the supply rises and the object
is reacquired, ad infinitum. To prevent this occurrence, the
output should only be lightly loaded if the device is operated
from an unregulated supply, e.g. batteries. Detection
‘stiction’, the opposite effect, can occur if a load is shed when
Out is active.
3 - CIRCUIT GUIDELINES
3.1 SAMPLE CAPACITOR
When used for most applications, the charge sampler Cs can
be virtually any plastic film or good quality ceramic capacitor.
The type should be relatively stable in the anticipated
l
ll
lq
qq
q 6 QT118HA_AR1.02_0408
Figure 2-4
Using a micro to obtain HB pulses in either output state
Figure 2-3
Getting HB pulses with a pullup resistor when not active
+2 ~ +5
Figure 2-5 Eliminating HB Pulses
3
4 6
5
72
O UT
O PT1
O PT2
GAIN
SNS 1
SNS 2CMO S
100p F
C
o
GATE OR
MICR O IN PUT
Figure 2-6 Piezo Sounder Circuit
Piezo Sounder
10-30nF
3
4 6
5
1
72
OUT
OPT2
GAIN
SNS2
SNS1
Vss
Vdd
8
OPT1
SENSING
ELECTRODE
C
x
Rs
+
2
.
5
~
+
5
R
E
+2 ~ +5

QT118HA-ISG

Mfr. #:
Manufacturer:
Microchip Technology / Atmel
Description:
Interface - Specialized Qtouch IC
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet