BCW72LT1

BCW72LT1G, SBCW72LT1G
www.onsemi.com
4
TYPICAL STATIC CHARACTERISTICS
Figure 8. DC Current Gain
I
C
, COLLECTOR CURRENT (mA)
400
0.004
h , DC CURRENT GAIN
FE
T
J
= 125°C
-55°C
25°C
V
CE
= 1.0 V
V
CE
= 10 V
Figure 9. Collector Saturation Region
I
C
, COLLECTOR CURRENT (mA)
1.4
Figure 10. Collector Characteristics
I
C
, COLLECTOR CURRENT (mA)
V, VOLTAGE (VOLTS)
1.0 2.0 5.0 10 20
50
1.6
100
T
J
= 25°C
V
BE(sat)
@ I
C
/I
B
= 10
V
CE(sat)
@ I
C
/I
B
= 10
V
BE(on)
@ V
CE
= 1.0 V
*q
VC
for V
CE(sat)
q
VB
for V
BE
0.1 0.2 0.5
Figure 11. “On” Voltages
I
B
, BASE CURRENT (mA)
0.4
0.6
0.8
1.0
0.2
0
V
CE
, COLLECTOR-EMITTER VOLTAGE (VOLTS)
0.002
T
J
= 25°C
I
C
= 1.0 mA 10 mA 100 mA
Figure 12. Temperature Coefficients
50 mA
V
CE
, COLLECTOR-EMITTER VOLTAGE (VOLTS)
40
60
80
100
20
0
0
I
C
, COLLECTOR CURRENT (mA)
T
A
= 25°C
PULSE WIDTH = 300 ms
DUTY CYCLE 2.0%
I
B
= 500 mA
400 mA
300 mA
200 mA
100 mA
*APPLIES for I
C
/I
B
h
FE
/2
25°C to 125°C
-55°C to 25°C
25°C to 125°C
-55°C to 25°C
40
60
0.006 0.01 0.02 0.03 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0
2.0
3.0
5.0 7.0 10 20 30 50 70 100
0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 5.0 10 15 20 25 30 35 40
1.2
1.0
0.8
0.6
0.4
0.2
0
-2.4
0.8
0
-1.6
-0.8
1.0 2.0 5.0 10 20
50
10
0
0.1 0.2 0.5
200
100
80
V
, TEMPERATURE COEFFICIENTS (mV/ C)°θ
BCW72LT1G, SBCW72LT1G
www.onsemi.com
5
TYPICAL DYNAMIC CHARACTERISTICS
C, CAPACITANCE (pF)
Figure 13. Turn−On Time
I
C
, COLLECTOR CURRENT (mA)
300
Figure 14. Turn−Off Time
I
C
, COLLECTOR CURRENT (mA)
2.0 5.0 10
20 30 50
1000
Figure 15. Current−Gain — Bandwidth Product
I
C
, COLLECTOR CURRENT (mA)
Figure 16. Capacitance
V
R
, REVERSE VOLTAGE (VOLTS)
Figure 17. Input Impedance
I
C
, COLLECTOR CURRENT (mA)
Figure 18. Output Admittance
I
C
, COLLECTOR CURRENT (mA)
3.01.0
500
0.5
10
t, TIME (ns)
t, TIME (ns)
f, CURRENT-GAIN BANDWIDTH PRODUCT (MHz)
T
h , OUTPUT ADMITTANCE ( mhos)
oe
m
h
ie
, INPUT IMPEDANCE (k )Ω
3.0
5.0
7.0
10
20
30
50
70
100
200
7.0
70 100
V
CC
= 3.0 V
I
C
/I
B
= 10
T
J
= 25°C
t
d
@ V
BE(off)
= 0.5 Vdc
t
r
10
20
30
50
70
100
200
300
500
700
2.0 5.0 10
20 30 50
3.01.0 7.0
70 100
V
CC
= 3.0 V
I
C
/I
B
= 10
I
B1
= I
B2
T
J
= 25°C
t
s
t
f
50
70
100
200
300
0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 50
T
J
= 25°C
f = 100 MHz
V
CE
= 20 V
5.0 V
1.0
2.0
3.0
5.0
7.0
0.1 0.2 0.5 1.0 2.0 5.0 10 20 500.05
T
J
= 25°C
f = 1.0 MHz
C
ib
C
ob
2.0 5.0 10
20 50
1.0
0.2
100
0.3
0.5
0.7
1.0
2.0
3.0
5.0
7.0
10
20
0.1 0.2 0.5
h
fe
200 @ I
C
= 1.0 mA
V
CE
= 10 Vdc
f = 1.0 kHz
T
A
= 25°C
2.0 5.0 10
20 50
1.0
2.0
100
3.0
5.0
7.0
10
20
30
50
70
100
200
0.1 0.2 0.5
V
CE
= 10 Vdc
f = 1.0 kHz
T
A
= 25°C
h
fe
200 @ I
C
= 1.0 mA
BCW72LT1G, SBCW72LT1G
www.onsemi.com
6
Figure 19. Thermal Response
t, TIME (ms)
1.0
0.01
r(t) TRANSIENT THERMAL RESISTANCE
(NORMALIZED)
0.01
0.02
0.03
0.05
0.07
0.1
0.2
0.3
0.5
0.7
0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 200 500 1.0k 2.0k 5.0k 10k 20k
50k
100k
D = 0.5
0.2
0.1
0.05
0.02
0.01
SINGLE PULSE
DUTY CYCLE, D = t
1
/t
2
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t
1
(SEE AN−569)
Z
q
JA(t)
= r(t) R
q
JA
T
J(pk)
− T
A
= P
(pk)
Z
q
JA(t)
t
1
t
2
P
(pk)
FIGURE 19A
Figure 19A.
T
J
, JUNCTION TEMPERATURE (°C)
10
4
-4
0
I
C
, COLLECTOR CURRENT (nA)
Figure 20.
V
CE
, COLLECTOR-EMITTER VOLTAGE (VOLTS)
400
2.0
I
C
, COLLECTOR CURRENT (mA)
DESIGN NOTE: USE OF THERMAL RESPONSE DATA
A train of periodical power pulses can be represented by the model
as shown in Figure 19A. Using the model and the device thermal
response the normalized effective transient thermal resistance of
Figure 19 was calculated for various duty cycles.
To find Z
q
JA(t)
, multiply the value obtained from Figure 19 by the
steady state value R
q
JA
.
Example:
The MPS3904 is dissipating 2.0 watts peak under the following
conditions:
t
1
= 1.0 ms, t
2
= 5.0 ms. (D = 0.2)
Using Figure 19 at a pulse width of 1.0 ms and D = 0.2, the reading of
r(t) is 0.22.
The peak rise in junction temperature is therefore
DT = r(t) x P
(pk)
x R
q
JA
= 0.22 x 2.0 x 200 = 88°C.
For more information, see AN−569.
The safe operating area curves indicate I
C
−V
CE
limits of the
transistor that must be observed for reliable operation. Collector load
lines for specific circuits must fall below the limits indicated by the
applicable curve.
The data of Figure 20 is based upon T
J(pk)
= 150°C; T
C
or T
A
is
variable depending upon conditions. Pulse curves are valid for duty
cycles to 10% provided T
J(pk)
150°C. T
J(pk)
may be calculated from
the data in Figure 19. At high case or ambient temperatures, thermal
limitations will reduce the power that can be handled to values less
than the limitations imposed by second breakdown.
10
-2
10
-1
10
0
10
1
10
2
10
3
-2
0
0 + 20 + 40 + 60 + 80 + 100 + 120 + 140 + 160
V
CC
= 30 Vdc
I
CEO
I
CBO
AND
I
CEX
@ V
BE(off)
= 3.0 Vdc
T
A
= 25°C
CURRENT LIMIT
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
1.0 ms
10 ms
T
C
= 25°C
1.0 s
dc
dc
4.0
6.0
10
20
40
60
100
200
4.0 6.0 8.0 10 20
40
T
J
= 150°C
100 ms

BCW72LT1

Mfr. #:
Manufacturer:
ON Semiconductor
Description:
TRANS NPN 45V 0.1A SOT-23
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet