4
ATmega8(L)
2486RS–AVR–07/07
The AVR core combines a rich instruction set with 32 general purpose working registers.
All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing
two independent registers to be accessed in one single instruction executed in one clock
cycle. The resulting architecture is more code efficient while achieving throughputs up to
ten times faster than conventional CISC microcontrollers.
The ATmega8 provides the following features: 8K bytes of In-System Programmable
Flash with Read-While-Write capabilities, 512 bytes of EEPROM, 1K byte of SRAM, 23
general purpose I/O lines, 32 general purpose working registers, three flexible
Timer/Counters with compare modes, internal and external interrupts, a serial program-
mable USART, a byte oriented Two-wire Serial Interface, a 6-channel ADC (eight
channels in TQFP and QFN/MLF packages) with 10-bit accuracy, a programmable
Watchdog Timer with Internal Oscillator, an SPI serial port, and five software selectable
power saving modes. The Idle mode stops the CPU while allowing the SRAM,
Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-
down mode saves the register contents but freezes the Oscillator, disabling all other
chip functions until the next Interrupt or Hardware Reset. In Power-save mode, the
asynchronous timer continues to run, allowing the user to maintain a timer base while
the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and
all I/O modules except asynchronous timer and ADC, to minimize switching noise during
ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the
rest of the device is sleeping. This allows very fast start-up combined with low-power
consumption.
The device is manufactured using Atmel’s high density non-volatile memory technology.
The Flash Program memory can be reprogrammed In-System through an SPI serial
interface, by a conventional non-volatile memory programmer, or by an On-chip boot
program running on the AVR core. The boot program can use any interface to download
the application program in the Application Flash memory. Software in the Boot Flash
Section will continue to run while the Application Flash Section is updated, providing
true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-
Programmable Flash on a monolithic chip, the Atmel ATmega8 is a powerful microcon-
troller that provides a highly-flexible and cost-effective solution to many embedded
control applications.
The ATmega8 AVR is supported with a full suite of program and system development
tools, including C compilers, macro assemblers, program debugger/simulators, In-Cir-
cuit Emulators, and evaluation kits.
Disclaimer Typical values contained in this datasheet are based on simulations and characteriza-
tion of other AVR microcontrollers manufactured on the same process technology. Min
and Max values will be available after the device is characterized.
5
ATmega8(L)
2486RS–AVR–07/07
Pin Descriptions
VCC Digital supply voltage.
GND Ground.
Port B (PB7..PB0)
XTAL1/XTAL2/TOSC1/TOSC2
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port B output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port B pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Depending on the clock selection fuse settings, PB6 can be used as input to the invert-
ing Oscillator amplifier and input to the internal clock operating circuit.
Depending on the clock selection fuse settings, PB7 can be used as output from the
inverting Oscillator amplifier.
If the Internal Calibrated RC Oscillator is used as chip clock source, PB7..6 is used as
TOSC2..1 input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.
The various special features of Port B are elaborated in “Alternate Functions of Port B”
on page 58 and “System Clock and Clock Options” on page 25.
Port C (PC5..PC0) Port C is an 7-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port C output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port C pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
PC6/RESET
If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electri-
cal characteristics of PC6 differ from those of the other pins of Port C.
If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on
this pin for longer than the minimum pulse length will generate a Reset, even if the clock
is not running. The minimum pulse length is given in Table 15 on page 38. Shorter
pulses are not guaranteed to generate a Reset.
The various special features of Port C are elaborated on page 61.
Port D (PD7..PD0) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port D output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port D pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port D also serves the functions of various special features of the ATmega8 as listed on
page 63.
RESET
Reset input. A low level on this pin for longer than the minimum pulse length will gener-
ate a reset, even if the clock is not running. The minimum pulse length is given in Table
15 on page 38. Shorter pulses are not guaranteed to generate a reset.
6
ATmega8(L)
2486RS–AVR–07/07
AV
CC
AV
CC
is the supply voltage pin for the A/D Converter, Port C (3..0), and ADC (7..6). It
should be externally connected to V
CC
, even if the ADC is not used. If the ADC is used,
it should be connected to V
CC
through a low-pass filter. Note that Port C (5..4) use digital
supply voltage, V
CC
.
AREF AREF is the analog reference pin for the A/D Converter.
ADC7..6 (TQFP and QFN/MLF
Package Only)
In the TQFP and QFN/MLF package, ADC7..6 serve as analog inputs to the A/D con-
verter. These pins are powered from the analog supply and serve as 10-bit ADC
channels.

ATMEGA8L-8PU

Mfr. #:
Manufacturer:
Microchip Technology / Atmel
Description:
8-bit Microcontrollers - MCU 8kB Flash 0.5kB EEPROM 23 I/O Pins
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet