Cautions and warnings
General
See "Important notes" on page 2.
Storage
Store thermistors only in original packaging. Do not open the package before storage.
Storage conditions in original packaging: storage temperature 25 °C ... +45 °C, relative
humidity 75% annual mean, maximum 95%, dew precipitation is inadmissible.
Avoid contamination of thermistors surface during storage, handling and processing.
Avoid storage of thermistor in harmful environments like corrosive gases (SO
x
, Cl etc).
Solder thermistors after shipment from EPCOS within the time specified:
Leaded components: 24 months
Handling
NTC inrush current limiters must not be dropped. Chip-offs must not be caused during handling
of NTC inrush current limiters.
Components must not be touched with bare hands. Gloves are recommended.
Avoid contamination of thermistor surface during handling.
In case of exposure of the NTC inrush current limiters to water, electrolytes or other aggressive
media, these media can penetrate the coating and reach the surface of the ceramic. Low-ohmic
or high-ohmic behavior may occur due to the formation of an electrolyte with metals
(silver/lead/tin from metallization or solder). Low-ohmic behavior is caused by electrochemical
migration, high-ohmic behavior by dissolving of the electrode. In either case, the functionality of
the NTC inrush current limiters can not be assured.
Washing processes may damage the product due to the possible static or cyclic mechanical
loads (e.g. ultrasonic cleaning). They may cause cracks to develop on the product and its parts,
which might lead to reduced reliability or lifetime.
Bending / twisting leads
A lead (wire) may be bent at a minimum distance of twice the wire’s diameter plus 4 mm from
the component head or housing. When bending ensure the wire is mechanically relieved at the
component head or housing. The bending radius should be at least 0.75 mm.
Twisting (torsion) by 180° of a lead bent by 90° is permissible at 6 mm from the bottom of the
thermistor body.
Soldering
Use resin-type flux or non-activated flux.
Insufficient preheating may cause ceramic cracks.
Rapid cooling by dipping in solvent is not recommended.
Complete removal of flux is recommended.
Inrush current limiters B57364S0***M0**
ICLs S364
Page 16 of 20Please read Cautions and warnings and
Important notes at the end of this document.
Mounting
When NTC inrush current limiters are encapsulated with sealing material or overmolded with
plastic material, the precautions given in chapter “Mounting instructions”, “Sealing and potting”
must be observed.
Electrode must not be scratched before/during/after the mounting process.
Contacts and housings used for assembly with thermistor have to be clean before mounting.
During operation, the inrush current limiters surface temperature can be very high. Ensure that
adjacent components are placed at a sufficient distance from the thermistor to allow for proper
cooling of the NTC inrush current limiters.
Ensure that adjacent materials are designed for operation at temperatures comparable to the
surface temperature of the thermistor. Be sure that surrounding parts and materials can
withstand this temperature.
Make sure that inrush current limiters are adequately ventilated to avoid overheating.
Avoid contamination of thermistor surface during processing.
Operation
Use NTC inrush current limiters only within the specified operating temperature range.
Use NTC inrush current limiters only within the specified voltage and current ranges.
Environmental conditions must not harm the NTC inrush current limiters. Use NTC inrush
current limiters only in normal atmospheric conditions.
Contact of NTC inrush current limiters with any liquids and solvents should be prevented. It
must be ensured that no water enters the NTC inrush current limiters (e.g. through plug
terminals). For measurement purposes (checking the specified resistance vs. temperature), the
component must not be immersed in water but in suitable liquids (e.g. Galden).
In case of exposure of the NTC inrush current limiters to water, electrolytes or other aggressive
media, these media can penetrate the coating and reach the surface of the ceramic. Low-ohmic
or high-ohmic behavior may occur due to the formation of an electrolyte with metals
(silver/lead/tin from metallization or solder). Low-ohmic behavior is caused by electrochemical
migration, high-ohmic behavior by dissolving of the electrode. In either case, the functionality of
the NTC inrush current limiters can not be assured.
Be sure to provide an appropriate fail-safe function to prevent secondary product damage
caused by malfunction (e.g. use a metal oxide varistor for limitation of overvoltage condition).
This listing does not claim to be complete, but merely reflects the experience of EPCOS AG.
Display of ordering codes for EPCOS products
The ordering code for one and the same EPCOS product can be represented differently in data
sheets, data books, other publications, on the EPCOS website, or in order-related documents
such as shipping notes, order confirmations and product labels. The varying representations of
the ordering codes are due to different processes employed and do not affect the
specifications of the respective products. Detailed information can be found on the Internet
under www.epcos.com/orderingcodes
Inrush current limiters B57364S0***M0**
ICLs S364
Page 17 of 20Please read Cautions and warnings and
Important notes at the end of this document.
Symbols and terms
Symbol English
B B value
C
test
Test capacitance
C
th
Heat capacitance
I Current
I
max
Maximum current within stated temperature range
I
NTC
NTC current
I
test
High test current for additional endurance tests
P
max
Maximum power within stated temperature range
R
min
Minimum resistance
R
R
Rated resistance
R
R
/R
R
Resistance tolerance
R
S
Series resistance
R
T
Resistance at temperature T
(e.g. R
25
= resistance at 25 °C)
T Temperature
t Time
T
A
Ambient temperature
t
a
Thermal threshold time
T
max
Upper category temperature
T
min
Lower category temperature
T
R
Rated temperature
V Voltage
V
load
Load voltage
V
NTC
Voltage drop across an NTC thermistor
α Temperature coefficient
Tolerance, change
δ
th
Dissipation factor
τ
c
Thermal cooling time constant
Abbreviations / Notes
Symbol English
* To be replaced by a number in ordering codes, type designations etc.
+ To be replaced by a letter.
All dimensions are given in mm.
The commas used in numerical values denote decimal points.
Inrush current limiters B57364S0***M0**
ICLs S364
Page 18 of 20Please read Cautions and warnings and
Important notes at the end of this document.

B57364S0409M051

Mfr. #:
Manufacturer:
EPCOS / TDK
Description:
ICL 4 OHM 20% 9.5A 21MM
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union