4-1 to 4-3). The value of Cs also has a dramatic effect on
sensitivity, and this can be increased in value (up to a limit).
Also, increasing the electrode's surface area will not
substantially increase touch sensitivity if its diameter is
already much larger in surface area than the object being
detected. The panel or other intervening material can be
made thinner, but again there are diminishing rewards for
doing so. Panel material can also be changed to one having
a higher dielectric constant, which will help propagate the
field through to the front. Locally adding some conductive
material to the panel (conductive materials essentially have
an infinite dielectric constant) will also help; for example,
adding carbon or metal fibers to a plastic panel will greatly
increase frontal field strength, even if the fiber density is too
low to make the plastic bulk-conductive.
1.3.5.2 Decreasing Sensitivity
In some cases the QT113 may be too sensitive, even on low
gain. In this case gain can be lowered further by a number of
strategies: making the electrode smaller, making the
electrode into a sparse mesh using a high
space-to-conductor ratio (Figure 1-3), or by decreasing Cs.
2 - QT113 SPECIFICS
2.1 SIGNAL PROCESSING
The QT113 processes all signals using 16 bit
math, using a number of algorithms pioneered by
Quantum. The algorithms are specifically
designed to provide for high 'survivability' in the
face of numerous adverse environmental
changes.
2.1.1 D
RIFT
C
OMPENSATION
A
LGORITHM
Signal drift can occur because of changes in Cx
and Cs over time. It is crucial that drift be
compensated for, otherwise false detections,
non-detections, and sensitivity shifts will follow.
Drift compensation (Figure 2-1) is performed by making the
reference level track the raw signal at a slow rate, but only
while there is no detection in effect. The rate of adjustment
must be performed slowly, otherwise legitimate detections
could be ignored. The QT113 drift compensates using a
slew-rate limited change to the reference level; the threshold
and hysteresis values are slaved to this reference.
Once an object is sensed, the drift compensation mechanism
ceases since the signal is legitimately high, and therefore
should not cause the reference level to change.
The QT113's drift compensation is 'asymmetric': the
reference level drift-compensates in one direction faster than
it does in the other. Specifically, it compensates faster for
decreasing signals than for increasing signals. Increasing
signals should not be compensated for quickly, since an
approaching finger could be compensated for partially or
entirely before even approaching the sense electrode.
However, an obstruction over the sense pad, for which the
sensor has already made full allowance for, could suddenly
be removed leaving the sensor with an artificially elevated
reference level and thus become insensitive to touch. In this
latter case, the sensor will compensate for the object's
removal very quickly, usually in only a few seconds.
With large values of Cs and small values of Cx, drift
compensation will appear to operate more slowly than with
the converse.
Note that the positive and negative drift
compensation rates are different.
2.1.2 T
HRESHOLD
C
ALCULATION
Unlike the QT110 device, the internal threshold level is fixed
at one of two setting as determined by Table 1-1. These
setting are fixed with respect to the internal reference level,
which in turn can move in accordance with the drift
compensation mechanism..
The QT113 employs a hysteresis dropout below the
threshold level of 17% of the delta between the reference and
threshold levels.
2.1.3 M
AX
O
N
-D
URATION
If an object or material obstructs the sense pad the signal
may rise enough to create a detection, preventing further
- 4 -
Figure 1-5
Shielding Against Fringe Fields
Sense
wire
Sense
wire
Unshielded
Electrode
Shielded
Electrode
Figure 2-1 Drift Compensation
Threshold
Signal
Hysteresis
Reference
Output
Vss (Gnd)
Low - 12 counts
Vdd
High - 6 counts
Tie Pin 5 to:Gain
Table 1-1 Gain Setting Strap Options
operation. To prevent this, the sensor includes a timer which
monitors detections. If a detection exceeds the timer setting,
the timer causes the sensor to perform a full recalibration
(when not set to infinite). This is known as the Max
On-Duration feature.
After the Max On-Duration interval, the sensor will once again
function normally, even if partially or fully obstructed, to the
best of its ability given electrode conditions. There are two
finite timeout durations available via strap option: 10 and 60
seconds (Table 2-1).
2.1.4 D
ETECTION
I
NTEGRATOR
It is desirable to suppress detections generated by electrical
noise or from quick brushes with an object. To accomplish
this, the QT113 incorporates a detect integration counter that
increments with each detection until a limit is reached, after
which the output is activated. If no detection is sensed prior
to the final count, the counter is reset immediately to zero. In
the QT113, the required count is 3.
The Detection Integrator can also be viewed as a 'consensus'
filter, that requires three detections in three successive bursts
to create an output.
2.1.5 F
ORCED
S
ENSOR
R
ECALIBRATION
The QT113 has no recalibration pin; a forced recalibration is
accomplished only when the device is powered up. However,
supply drain is low so it is a simple matter to treat the entire
IC as a controllable load; simply driving the QT113's Vdd pin
directly from another logic gate or a microcontroller port
(Figure 2-2) will serve as both power and 'forced recal'. The
source resistance of most CMOS gates and microcontrollers
are low enough to provide direct power without problem. Note
that most 8051-based micros have only a weak pullup drive
capability and will require CMOS buffering. 74HC or 74AC
series gates can directly power the QT113, as can most other
microcontrollers.
Option strap configurations are read by the QT113 only on
powerup. Configurations can only be changed by powering
the QT113 down and back up again; again, a microcontroller
can directly alter most of the configurations and cycle power
to put them in effect.
2.1.6 R
ESPONSE
T
IME
The QT113's response time is highly dependent on burst
length, which in turn is dependent on Cs and Cx (see Figures
4-1, 4-2). With increasing Cs, response time slows, while
increasing levels of Cs reduce response time. Figure 4-3
shows the typical effects of Cs and Cx on response time.
2.2 OUTPUT FEATURES
The QT113 is designed for maximum flexibility and can
accommodate most popular sensing requirements. These
are selectable using strap options on pins OPT1 and OPT2.
All options are shown in Table 2-1.
2.2.1 DC M
ODE
O
UTPUT
The output of the QT113 can respond in a DC mode, where
the output is active-low upon detection. The output will
remain active-low for the duration of the detection, or until the
Max On-Duration expires (if not infinite), whichever occurs
first. If a max on-duration timeout occurs first, the sensor
performs a full recalibration and the output becomes inactive
until the next detection.
In this mode, three Max On-Duration timeouts are available:
10 seconds, 60 seconds, and infinite.
Infinite timeout is useful in applications where a prolonged
detection can occur and where the output must reflect the
detection no matter how long. In infinite timeout mode, the
designer should take care to be sure that drift in Cs, Cx, and
Vdd do not cause the device to ‘stick on’ inadvertently even
when the target object is removed from the sense field.
2.2.2 T
OGGLE
M
ODE
O
UTPUT
This makes the sensor respond in an on/off mode like a flip
flop. It is most useful for controlling power loads, for example
in kitchen appliances, power tools, light switches, etc.
Max On-Duration in Toggle mode is fixed at 10 seconds.
When a timeout occurs, the sensor recalibrates but leaves
the output state unchanged.
2.2.3 H
EART
B
EAT
™ O
UTPUT
The QT113 output has a full-time HeartBeat™ ‘health’
indicator superimposed on it. This operates by taking 'Out'
into a 3-state mode for 300µs once after every QT burst. This
output state can be used to determine that the sensor is
operating properly, or, it can be ignored using one of several
simple methods.
The HeartBeat indicator can be sampled by using a pulldown
resistor on Out, and feeding the resulting negative-going
pulse into a counter, flip flop, one-shot, or other circuit. Since
Out is normally high, a pulldown resistor will create negative
HeartBeat pulses (Figure 2-3) when the sensor is not
detecting an object; when detecting an object, the output will
remain low for the duration of the detection, and no
HeartBeat pulse will be evident.
If the sensor is wired to a microcontroller as shown in Figure
2-4, the microcontroller can reconfigure the load resistor to
either ground or Vcc depending on the output state of the
QT113, so that the pulses are evident in either state.
- 5 -
infiniteVddGnd
DC Out
10sGndGnd
Toggle
60sGndVdd
DC Out
10sVddVdd
DC Out
Max On-
Duration
Tie
Pin 4 to:
Tie
Pin 3 to:
Table 2-1 Output Mode Strap Options
Figure 2-2 Powering From a CMOS Port Pin
0.01µF
CMOS
microcontroller
OUT
PORT X.m
PORT X.n
Vdd
Vss
QT110
Electromechanical devices like relays will usually ignore this
short pulse. The pulse also has too low a duty cycle to visibly
affect LED’s. It can be filtered completely if desired, by
adding an RC timeconstant to filter the output, or if interfacing
directly and only to a high-impedance CMOS input, by doing
nothing or at most adding a small non-critical capacitor from
Out to ground (Figure 2-5).
The QT113H variant has an active-high output; the heartbeat
signal of the QT113H works in exactly the same manner.
2.2.4 O
UTPUT
D
RIVE
The QT113’s `output is active low and can sink up to 5mA of
non-inductive current. If an inductive load is used, such as a
small relay, the load should be diode clamped to prevent
damage. When set to operate in a proximity mode (at high
gain) the current should be limited to 1mA to prevent gain
shifting side effects from occurring, which happens when the
load current creates voltage drops on the die and bonding
wires; these small shifts can materially influence the signal
level to cause detection instability as described below.
Care should be taken when the QT113 and the load are both
powered from the same supply, and the supply is minimally
regulated. The QT113 derives its internal references from the
power supply, and sensitivity shifts can occur with changes in
Vdd, as happens when loads are switched on. This can
induce detection ‘cycling’, whereby an object is detected, the
load is turned on, the supply sags, the detection is no longer
sensed, the load is turned off, the supply rises and the object
is reacquired, ad infinitum. To prevent this occurrence, the
output should only be lightly loaded if the device is operated
from an unregulated supply, e.g. batteries. Detection
‘stiction’, the opposite effect, can occur if a load is shed when
Out is active.
The output of the QT113 can directly drive a resistively
limited LED. The LED should be connected with its cathode
to the output and its anode towards Vcc, so that it lights when
the sensor is active. If desired the LED can be connected
from Out to ground, and driven on when the sensor is
inactive.
The QT113H variant has an active-high output.
3 - CIRCUIT GUIDELINES
3.1 SAMPLE CAPACITOR
Charge sampler Cs can be virtually any plastic film or
medium-K ceramic capacitor. The acceptable Cs range is
from 10nF to 500nF depending on the sensitivity required;
larger values of Cs demand higher stability to ensure reliable
sensing. Acceptable capacitor types include polycarbonate,
PPS film, or NPO/C0G ceramic.
3.2 OPTION STRAPPING
The option pins Opt1 and Opt2 should never be left floating.
If they are floated, the device will draw excess power and the
options will not be properly read on powerup. Intentionally,
there are no pullup resistors on these lines, since pullup
resistors add to power drain if tied low.
The Gain input should be connected to either Vdd or Gnd.
Tables 1-1 and 2-1 show the option strap configurations
available.
3.4 POWER SUPPLY, PCB LAYOUT
The power supply can range from 2.5 to 5.0 volts. At 3 volts
current drain averages less than 600µA in most cases, but
can be higher if Cs is large. Increasing Cx values will actually
decrease power drain. Operation can be from batteries, but
be cautious about loads causing supply droop (see Output
Drive, previous section).
As battery voltage sags with use or fluctuates slowly with
temperature, the QT113 will track and compensate for these
changes automatically with only minor changes in sensitivity.
If the power supply is shared with another electronic system,
care should be taken to assure that the supply is free of
- 6 -
Figure 2-4
Using a micro to obtain HB pulses in either output state
Figure 2-3
Getting HearBeat pulses with a pull-down resistor
3
46
5
1
+2.5 to 5
72
OUT
OPT1
OPT2
GAIN
SNS1
SNS2
Vss
Vdd
8
Ro
HeartBeat™ Pulses
Microcontroller
PORT_M.x
PORT_M.y
3
46
5
72
OUT
OPT1
OPT2
GAIN
SNS1
SNS2
R
o
Figure 2-5 Eliminating HB Pulses
3
46
5
72
OUT
OPT1
OPT2
GAIN
SNS1
SNS2
CMOS
100pF
C
o
GATE OR
MICRO INPUT

QT113H-ISG

Mfr. #:
Manufacturer:
Description:
IC SENSOR TOUCH/PROX 1CHAN 8SOIC
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union