7
FN9042.8
June 8, 2006
Operation-Mode Control
The mode-control circuit changes the converter’s mode of
operation based on the voltage polarity of the phase node
when the lower MOSFET is conducting and just before the
upper MOSFET turns on. For continuous inductor current,
the phase node is negative when the lower MOSFET is
conducting and the converters operate in fixed-frequency
PWM mode as shown in Figure 3. When the load current
decreases to the point where the inductor current flows
through the lower MOSFET in the ‘reverse’ direction, the
phase node becomes positive, and the mode is changed to
hysteretic.
A phase comparator handles the timing of the phase node
voltage sensing. A low level on the phase comparator output
indicates a negative phase voltage during the conduction
time of the lower MOSFET. A high level on the phase
comparator output indicates a positive phase voltage.
When the phase node is positive (phase comparator high),
at the end of the lower MOSFET conduction time, for eight
consecutive clock cycles, the mode is changed to hysteretic
as shown in Figure 3. The dashed lines indicate when the
phase node goes positive and the phase comparator output
goes high. The solid vertical lines at 1,2,...8 indicate the
sampling time, of the phase comparator, to determine the
polarity (sign) of the phase node. At the transition between
PWM and hysteretic mode both the upper and lower
MOSFETs are turned off. The phase node will ‘ring’ based
on the output inductor and the parasitic capacitance on the
phase node and settle out at the value of the output voltage.
The mode change from hysteretic to PWM can be caused by
one of two events. One event is the same mechanism that
causes a PWM to hysteretic transition. But instead of looking
for eight consecutive positive occurrences on the phase
node, it is looking for eight consecutive negative
occurrences on the phase node. The operation mode will be
changed from hysteretic to PWM when these eight
consecutive pulses occur. This transition technique prevents
jitter of the operation mode at load levels close to boundary.
The other mechanism for changing from hysteretic to PWM
is due to a sudden increase in the output current. This step
load causes an instantaneous decrease in the output voltage
due to the voltage drop on the output capacitor ESR. If the
decrease causes the output voltage to drop below the
hysteretic regulation level, the mode is changed to PWM on
the next clock cycle. This insures the full power required by
the increase in output current.
Gate Control Logic
The gate control logic translates generated PWM control
signals into the MOSFET gate drive signals providing
necessary amplification, level shifting and shoot-through
protection. Also, it has functions that help optimize the IC
performance over a wide range of operational conditions.
Since MOSFET switching time can vary dramatically from
type to type and with the input voltage, the gate control logic
provides adaptive dead time by monitoring the gate-to-
source voltages of both upper and lower MOSFETs. The
lower MOSFET is not turned on until the gate-to-source
voltage of the upper MOSFET has decreased to less than
approximately 1V. Similarly, the upper MOSFET is not turned
on until the gate-to-source voltage of the lower MOSFET has
decreased to less than approximately 1V. This allows a wide
variety of upper and lower MOSFETs to be used without a
concern for simultaneous conduction, or shoot-through.
PWM
HYSTERETIC
1 2 3 4 5 6 7 8
VOUT
I
L
PHASE
COMP
MODE
OF
t
t
t
t
FIGURE 2. HYSTERETIC OPERATION MODE
OPERATION
PWM
HYSTERETIC
1 2 3 4
5 6
7 8
I
L
PHASE
COMP
OPERATION
MODE
OF
t
t
t
PHASE
NODE
t
FIGURE 3. MODE CONTROL WAVEFORMS
ISL6224
8
FN9042.8
June 8, 2006
Soft-Start Operation
Soft-start of the Synchronous Buck Converter is
accomplished by means of a capacitor connected from pin 7,
SOFT to ground. The soft-start time can be obtained from
the following equation:
Figure 4 shows the soft-start initiated by the ENABLE pin
being pulled high with the VIN input at 5.6V and the resulting
3.3V output and PGOOD signal. While the ENABLE pin is
held low, prior to t0, the output is off. When the EN pin is
pulled high, at t0, the voltage on the capacitor connected to
the soft-start pin rises linearly due to the internal 5
A current
source starts charging the capacitor. The output voltage
follows the voltage on the capacitor till it reaches the value of
0.9V at t1. At this moment, t1, the output voltage started
regulation. The soft-start is complete when PGOOD pin is
high at t2 and further rise of the voltage on the soft-start
capacitor does not affect the output voltage.
Power Good Status
The ISL6224 monitors the output voltage. A single power-
good signal, PGOOD, is issued when soft-start is completed
and the output is within 10% of it’s set point. After the soft-
start sequence is completed, undervoltage protection
latches the chip off when any of the monitored outputs drop
below 70% of its set point.
A ‘soft-crowbar’ function is implemented for an overvoltage
on the output. If the output voltage goes above 120% of its
nominal output level, the upper MOSFET is turned off and
the lower MOSFET is turned on. This ‘soft-crowbar
condition will be maintained until the output voltage returns
to the regulation window and then normal operation will
continue.
This ‘soft-crowbarand monitoring of the output, prevents the
output voltage from ringing negative as the inductor current
flows in the ‘reverse’ direction through the lower MOSFET
and output capacitors.
Component Selection Guidelines
Output Capacitor Selection
The output capacitors have unique requirements. In general,
the output capacitors should be selected to meet the
dynamic regulation requirements including ripple voltage
and load transients.
Selection of the output capacitors is also dependent on the
output inductor so some inductor analysis is required to
select the output capacitors.
One of the parameters limiting the converter’s response to a
load transient is the time required for the inductor current to
slew to its new level. Given a sufficiently fast control loop
design, the ISL6224 will provide either 0% or 94% duty cycle
in response to a load transient. The response time is the
time interval required to slew the inductor current from an
initial current value to the load current level. During this
interval the difference between the inductor current and the
transient current level must be supplied by the output
capacitor(s). Minimizing the response time can minimize the
output capacitance required. If the load transient rise time is
slower than the inductor response time, as in a hard drive or
CD drive, this reduces the requirement on the output
capacitor.
The maximum capacitor value required to provide the full,
rising step, transient load current during the response time of
the inductor is:
Where: C
OUT
is the output capacitor(s) required, L
O
is the
output inductor, I
TRAN
is the transient load current step, V
IN
is the input voltage, V
OUT
is output voltage, and DV
OUT
is
the drop in output voltage allowed during the load transient.
High frequency capacitors initially supply the transient
current and slow the load rate-of-change seen by the bulk
capacitors. The bulk filter capacitor values are generally
determined by the ESR (equivalent series resistance) and
voltage rating requirements as well as actual capacitance
requirements. The output voltage ripple is due to the inductor
ripple current and the ESR of the output capacitors as
defined by:
where, is calculated in the Inductor Selection section.
High frequency decoupling capacitors should be placed as
close to the power pins of the load as physically possible. Be
careful not to add inductance in the circuit board wiring that
Tss
1.5V Css
5.0A
------------------------------
=
FIGURE 4. MODE CONTROL WAVEFORMS
t0 t1 t2
C
OUT
L
O
I
TRAN
V
IN
V
OUT
2
----------------------------------------------
I
TRAN
DV
OUT
--------------------
=
V
RIPPLE
I
L
ESR=
I
L
ISL6224
9
FN9042.8
June 8, 2006
could cancel the usefulness of these low inductance
components. Consult with the manufacturer of the load
circuitry for specific decoupling requirements.
Use only specialized low-ESR capacitors intended for
switching-regulator applications, at 300kHz, for the bulk
capacitors. In most cases, multiple electrolytic capacitors of
small case size perform better than a single large case
capacitor.
The stability requirement on the selection of the output
capacitor is that the ‘ESR zero’, f
Z
, be between 1.2kHz and
30kHz. This range is set by an internal, single compensation
zero at 6kHz. The ESR zero can be a factor of five on either
side of the internal zero and still contribute to increased
phase margin of the control loop. Therefore:
In conclusion, the output capacitors must meet three criteria:
1. They must have sufficient bulk capacitance to sustain the
output voltage during a load transient while the output
inductor current is slewing to the value of the load
transient
2. The ESR must be sufficiently low to meet the desired
output voltage ripple due to the output inductor current,
and
3. The ESR zero should be placed, in a rather large range,
to provide additional phase margin.
Output Inductor Selection
The output inductor is selected to meet the output voltage
ripple requirements. The inductor value determines the
converter’s ripple current and the ripple voltage is a function
of the ripple current and output capacitor(s) ESR. The ripple
voltage expression is given in the capacitor selection section
and the ripple current is approximated by the following
equation:
where F
s
is the switching frequency.
Input Capacitor Selection
The important parameters for the bulk input capacitor(s) are
the voltage rating and the RMS current rating. For reliable
operation, select bulk input capacitors with voltage and
current ratings above the maximum input voltage and largest
RMS current required by the circuit. The capacitor voltage
rating should be at least 1.25 times greater than the
maximum input voltage and 1.5 times is a conservative
guideline.
The AC RMS input current varies with load. Depending on
the specifics of the input power and it’s impedance, most (or
all) of this current is supplied by the input capacitor(s).
Use a mix of input bypass capacitors to control the voltage
ripple across the MOSFETs. Use ceramic capacitors for the
high frequency decoupling and bulk capacitors to supply the
RMS current. Small ceramic capacitors can be placed very
close to the upper MOSFET to suppress the voltage induced
in the parasitic circuit impedances.
For board designs that allow through-hole components, the
Sanyo OS-CON® series offer low ESR and good
temperature performance.
For surface mount designs, solid tantalum capacitors can be
used, but caution must be exercised with regard to the
capacitor surge current rating. These capacitors must be
capable of handling the surge-current at power-up. The TPS
series available from AVX is surge current tested.
MOSFET Considerations
The logic level MOSFETs are chosen for optimum efficiency
given the potentially wide input voltage range and output
power requirements. One dual N-Channel or two N-Channel
MOSFETs are used in each of the synchronous rectified
buck converters for the outputs. These MOSFETs should be
selected based upon r
DS(ON)
, gate supply requirements,
and thermal management considerations.
The power dissipation includes two loss components;
conduction loss and switching loss. These losses are
distributed between the upper and lower MOSFETs
according to duty cycle (see the following equations). The
conduction losses are the main component of power
dissipation for the lower MOSFETs. Only the upper MOSFET
has significant switching losses, since the lower device turns
on and off into near-zero voltage.
The equations assume linear voltage-current transitions and
do not model power loss due to the reverse-recovery of the
lower MOSFET’s body diode.
The gate-charge losses are dissipated by the ISL6224 and
do not heat the MOSFETs. However, a large gate-charge
increases the switching time, t
SW
which increases the upper
MOSFET switching losses. Ensure that both MOSFETs are
within their maximum junction temperature at high ambient
temperature by calculating the temperature rise according to
package thermal-resistance specifications.
C
OUT
1
2 ESR f
Z
-------------------------------------------
=
I
L
V
IN
V
OUT
F
S
L
--------------------------------
V
OUT
V
IN
----------------
=
P
UPPER
I
O
2
r
DS ON
V
OUT
V
IN
------------------------------------------------------------
I
O
V
IN
t
SW
F
S
2
----------------------------------------------------
+=
P
LOWER
I
O
2
r
DS ON
V
IN
V
OUT

V
IN
---------------------------------------------------------------------------------
=
ISL6224

ISL6224CA

Mfr. #:
Manufacturer:
Renesas / Intersil
Description:
IC REG CTRLR BUCK 16SSOP
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet