Philips Semiconductors Product specification
80C51/87C51/80C52/87C52
80C51 8-bit microcontroller family
4 K/8 K OTP/ROM low voltage (2.7 V–5.5 V),
low power, high speed (33 MHz), 128/256 B RAM
2000 Aug 07
7
PIN DESCRIPTIONS
PIN NUMBER
MNEMONIC DIP LCC QFP TYPE NAME AND FUNCTION
V
SS
20 22 16 I Ground: 0 V reference.
V
CC
40 44 38 I Power Supply: This is the power supply voltage for normal, idle, and power-down operation.
P0.0–0.7 39–32 43–36 37–30 I/O Port 0: Port 0 is an open-drain, bidirectional I/O port with Schmitt trigger inputs. Port 0 pins
that have 1s written to them float and can be used as high-impedance inputs. Port 0 is also
the multiplexed low-order address and data bus during accesses to external program and
data memory. In this application, it uses strong internal pull-ups when emitting 1s. Port 0
also outputs the code bytes during program verification and received code bytes during
EPROM programming. External pull-ups are required during program verification.
P1.0–P1.7 1–8 2–9 40–44,
1–3
I/O Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups and Schmitt trigger
inputs. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and
can be used as inputs. As inputs, port 1 pins that are externally pulled low will source
current because of the internal pull-ups. (See DC Electrical Characteristics: I
IL
). Port 1 also
receives the low-order address byte during program memory verification. Alternate functions
for Port 1 include:
1 2 40 I/O T2 (P1.0): Timer/Counter 2 external count input/clockout (see Programmable Clock-Out)
2 3 41 I T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction control
P2.0–P2.7 21–28 24–31 18–25 I/O Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups and Schmitt trigger
inputs. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and
can be used as inputs. As inputs, port 2 pins that are externally being pulled low will source
current because of the internal pull-ups. (See DC Electrical Characteristics: I
IL
). Port 2 emits
the high-order address byte during fetches from external program memory and during
accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this
application, it uses strong internal pull-ups when emitting 1s. During accesses to external
data memory that use 8-bit addresses (MOV @Ri), port 2 emits the contents of the P2
special function register. Some Port 2 pins receive the high order address bits during
EPROM programming and verification.
P3.0–P3.7 10–17 11,
13–19
5,
7–13
I/O Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups and Schmitt trigger
inputs. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and
can be used as inputs. As inputs, port 3 pins that are externally being pulled low will source
current because of the pull-ups. (See DC Electrical Characteristics: I
IL
). Port 3 also serves
the special features of the 80C51 family, as listed below:
10 11 5 I RxD (P3.0): Serial input port
11 13 7 O TxD (P3.1): Serial output port
12 14 8 I INT0 (P3.2): External interrupt
13 15 9 I INT1 (P3.3): External interrupt
14 16 10 I T0 (P3.4): Timer 0 external input
15 17 11 I T1 (P3.5): Timer 1 external input
16 18 12 O WR (P3.6): External data memory write strobe
17 19 13 O RD (P3.7): External data memory read strobe
RST 9 10 4 I Reset: A high on this pin for two machine cycles while the oscillator is running, resets the
device. An internal diffused resistor to V
SS
permits a power-on reset using only an external
capacitor to V
CC
.
ALE/PROG 30 33 27 O Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the
address during an access to external memory. In normal operation, ALE is emitted at a
constant rate of 1/6 the oscillator frequency, and can be used for external timing or clocking.
Note that one ALE pulse is skipped during each access to external data memory. This pin is
also the program pulse input (PROG) during EPROM programming. ALE can be disabled by
setting SFR auxiliary.0. With this bit set, ALE will be active only during a MOVX instruction.
PSEN 29 32 26 O Program Store Enable: The read strobe to external program memory. When the device is
executing code from the external program memory, PSEN is activated twice each machine
cycle, except that two PSEN activations are skipped during each access to external data
memory. PSEN is not activated during fetches from internal program memory.
EA/V
PP
31 35 29 I External Access Enable/Programming Supply Voltage: EA must be externally held low
to enable the device to fetch code from external program memory locations 0000H to
0FFFH. If EA is held high, the device executes from internal program memory unless the
program counter contains an address greater than the on-chip ROM/OTP. This pin also
receives the 12.75 V programming supply voltage (V
PP
) during EPROM programming. If
security bit 1 is programmed, EA will be internally latched on Reset.
XTAL1 19 21 15 I Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator
circuits.
XTAL2 18 20 14 O Crystal 2: Output from the inverting oscillator amplifier.
NOTE:
To avoid “latch-up” effect at power-on, the voltage on any pin at any time must not be higher than V
CC
+ 0.5 V or V
SS
– 0.5 V, respectively.
Philips Semiconductors Product specification
80C51/87C51/80C52/87C52
80C51 8-bit microcontroller family
4 K/8 K OTP/ROM low voltage (2.7 V–5.5 V),
low power, high speed (33 MHz), 128/256 B RAM
2000 Aug 07
8
Table 1. 80C51/87C51/80C52/87C52 Special Function Registers
SYMBOL DESCRIPTION
DIRECT
ADDRESS
BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION
MSB LSB
RESET
VALUE
ACC* Accumulator E0H E7 E6 E5 E4 E3 E2 E1 E0 00H
AUXR# Auxiliary 8EH AO xxxxxxx0B
AUXR1# Auxiliary 1 A2H LPEP
2
WUPD 0 DPS xxx000x0B
B* B register F0H F7 F6 F5 F4 F3 F2 F1 F0 00H
DPTR: Data Pointer (2 bytes)
DPH Data Pointer High 83H 00H
DPL Data Pointer Low 82H 00H
AF AE AD AC AB AA A9 A8
IE* Interrupt Enable A8H EA ET2 ES ET1 EX1 ET0 EX0 0x000000B
BF BE BD BC BB BA B9 B8
IP* Interrupt Priority B8H PT2 PS PT1 PX1 PT0 PX0 xx000000B
B7 B6 B5 B4 B3 B2 B1 B0
IPH# Interrupt Priority High B7H PT2H PSH PT1H PX1H PT0H PX0H xx000000B
87 86 85 84 83 82 81 80
P0* Port 0 80H AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 FFH
97 96 95 94 93 92 91 90
P1* Port 1 90H T2EX T2 FFH
A7 A6 A5 A4 A3 A2 A1 A0
P2* Port 2 A0H AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8 FFH
B7 B6 B5 B4 B3 B2 B1 B0
P3* Port 3 B0H RD WR T1 T0 INT1 INT0 TxD RxD FFH
PCON#
1
Power Control 87H SMOD1 SMOD0 POF GF1 GF0 PD IDL 00xx0000B
D7 D6 D5 D4 D3 D2 D1 D0
PSW* Program Status Word D0H CY AC F0 RS1 RS0 OV P 000000x0B
RACAP2H# Timer 2 Capture High CBH 00H
RACAP2L# Timer 2 Capture Low CAH 00H
SADDR# Slave Address A9H 00H
SADEN# Slave Address Mask B9H 00H
SBUF Serial Data Buffer 99H xxxxxxxxB
9F 9E 9D 9C 9B 9A 99 98
SCON* Serial Control 98H
SM0/FE
SM1 SM2 REN TB8 RB8 TI RI 00H
SP Stack Pointer 81H 07H
8F 8E 8D 8C 8B 8A 89 88
TCON* Timer Control 88H TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 00H
CF CE CD CC CB CA C9 C8
T2CON* Timer 2 Control C8H TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2 00H
T2MOD# Timer 2 Mode Control C9H T2OE DCEN xxxxxx00B
TH0 Timer High 0 8CH 00H
TH1 Timer High 1 8DH 00H
TH2# Timer High 2 CDH 00H
TL0 Timer Low 0 8AH 00H
TL1 Timer Low 1 8BH 00H
TL2# Timer Low 2 CCH 00H
TMOD Timer Mode 89H GATE C/T M1 M0 GATE C/T M1 M0 00H
NOTE:
Unused register bits that are not defined should not be set by the user’s program. If violated, the device could function incorrectly.
* SFRs are bit addressable.
# SFRs are modified from or added to the 80C51 SFRs.
Reserved bits.
1. Reset value depends on reset source.
2. LPEP – Low Power EPROM operation (OTP/EPROM only)
Philips Semiconductors Product specification
80C51/87C51/80C52/87C52
80C51 8-bit microcontroller family
4 K/8 K OTP/ROM low voltage (2.7 V–5.5 V),
low power, high speed (33 MHz), 128/256 B RAM
2000 Aug 07
9
OSCILLATOR CHARACTERISTICS
XTAL1 and XTAL2 are the input and output, respectively, of an
inverting amplifier. The pins can be configured for use as an on-chip
oscillator, as shown in the logic symbol.
To drive the device from an external clock source, XTAL1 should be
driven while XTAL2 is left unconnected. There are no requirements
on the duty cycle of the external clock signal, because the input to
the internal clock circuitry is through a divide-by-two flip-flop.
However, minimum and maximum high and low times specified in
the data sheet must be observed.
Reset
A reset is accomplished by holding the RST pin high for at least two
machine cycles (24 oscillator periods), while the oscillator is running.
To insure a good power-up reset, the RST pin must be high long
enough to allow the oscillator time to start up (normally a few
milliseconds) plus two machine cycles.
Stop Clock Mode
The static design enables the clock speed to be reduced down to
0 MHz (stopped). When the oscillator is stopped, the RAM and
Special Function Registers retain their values. This mode allows
step-by-step utilization and permits reduced system power
consumption by lowering the clock frequency down to any value. For
lowest power consumption the Power Down mode is suggested.
Idle Mode
In idle mode (see Table 2), the CPU puts itself to sleep while all of
the on-chip peripherals stay active. The instruction to invoke the idle
mode is the last instruction executed in the normal operating mode
before the idle mode is activated. The CPU contents, the on-chip
RAM, and all of the special function registers remain intact during
this mode. The idle mode can be terminated either by any enabled
interrupt (at which time the process is picked up at the interrupt
service routine and continued), or by a hardware reset which starts
the processor in the same manner as a power-on reset.
Power-Down Mode
To save even more power, a Power Down mode (see Table 2) can
be invoked by software. In this mode, the oscillator is stopped and
the instruction that invoked Power Down is the last instruction
executed. The on-chip RAM and Special Function Registers retain
their values down to 2.0 V and care must be taken to return V
CC
to
the minimum specified operating voltages before the Power Down
Mode is terminated.
For the 87C51 and 80C51 either a hardware reset or external
interrupt can be used to exit from Power Down. Reset redefines all
the SFRs but does not change the on-chip RAM. An external
interrupt allows both the SFRs and the on-chip RAM to retain their
values. WUPD (AUXR1.3–Wakeup from Power Down) enables or
disables the wakeup from power down with external interrupt.
Where:
WUPD = 0 Disable
WUPD = 1 Enable
To properly terminate Power Down the reset or external interrupt
should not be executed before V
CC
is restored to its normal
operating level and must be held active long enough for the
oscillator to restart and stabilize (normally less than 10 ms).
With an external interrupt, INT0 or INT1 must be enabled and
configured as level-sensitive. Holding the pin low restarts the
oscillator but bringing the pin back high completes the exit. Once the
interrupt is serviced, the next instruction to be executed after RETI
will be the one following the instruction that put the device into
Power Down.
LPEP
The eprom array contains some analog circuits that are not required
when V
CC
is less than 4 V, but are required for a V
CC
greater than
4 V. The LPEP bit (AUXR.4), when set, will powerdown these analog
circuits resulting in a reduced supply current. This bit should be set
ONLY for applications that operate at a V
CC
less than 4 V.
Design Consideration
When the idle mode is terminated by a hardware reset, the device
normally resumes program execution, from where it left off, up to
two machine cycles before the internal reset algorithm takes
control. On-chip hardware inhibits access to internal RAM in this
event, but access to the port pins is not inhibited. To eliminate the
possibility of an unexpected write when Idle is terminated by
reset, the instruction following the one that invokes Idle should not
be one that writes to a port pin or to external memory.
ONCE Mode
The ONCE (“On-Circuit Emulation”) Mode facilitates testing and
debugging of systems without the device having to be removed from
the circuit. The ONCE Mode is invoked by:
1. Pull ALE low while the device is in reset and PSEN
is high;
2. Hold ALE low as RST is deactivated.
While the device is in ONCE Mode, the Port 0 pins go into a float
state, and the other port pins and ALE and PSEN
are weakly pulled
high. The oscillator circuit remains active. While the device is in this
mode, an emulator or test CPU can be used to drive the circuit.
Normal operation is restored when a normal reset is applied.
Table 2. External Pin Status During Idle and Power-Down Modes
MODE PROGRAM MEMORY ALE PSEN PORT 0 PORT 1 PORT 2 PORT 3
Idle Internal 1 1 Data Data Data Data
Idle External 1 1 Float Data Address Data
Power-down Internal 0 0 Data Data Data Data
Power-down External 0 0 Float Data Data Data

P87C52SBAA,512

Mfr. #:
Manufacturer:
NXP Semiconductors
Description:
Microcontrollers - MCU 8-bit Microcontrollers - MCU 80C51 8K/256 OTP 16MHZ
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union