9397 750 14965 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Product data sheet Rev. 02 — 20 June 2005 16 of 58
Philips Semiconductors
SC16C654B/654DB
5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 64-byte FIFOs
6.1 Interface options
Two user interface modes are selectable for the PLCC68 package. These interface modes
are designated as the ‘16 mode’ and the ‘68 mode’. This nomenclature corresponds to the
early 16C454/554 and 68C454/554 package interfaces respectively.
6.1.1 The 16 mode interface
The 16 mode configures the package interface pins for connection as a standard
16 series (Intel) device and operates similar to the standard CPU interface available on
the 16C454/554. In the 16 mode (pin 16/68 = logic 1), each UART is selected with
individual chip select (CSx) pins, as shown in Table 3.
6.1.2 The 68 mode interface
The 68 mode configures the package interface pins for connection with Motorola, and
other popular microprocessor bus types. The interface operates similar to the
68C454/554. In this mode, the SC16C654B/654DB decodes two additional addresses,
A3-A4, to select one of the four UART ports. The A[3:4] address decode function is used
only when in the 68 mode (16/68 = logic 0), and is shown in Table 4.
Table 3: Serial port channel selection, 16 mode interface
CSA CSB CSC CSD UART channel
1111none
0111A
1011B
1101C
1110D
Table 4: Serial port channel selection, 68 mode interface
CS A4 A3 UART channel
1 n/a n/a none
000A
001B
010C
011D
9397 750 14965 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Product data sheet Rev. 02 — 20 June 2005 17 of 58
Philips Semiconductors
SC16C654B/654DB
5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 64-byte FIFOs
6.2 Internal registers
The SC16C654B/654DB provides 17 internal registers for monitoring and control. These
registers are shown in Table 5. Twelve registers are similar to those already available in
the standard 16C554. These registers function as data holding registers (THR/RHR),
interrupt status and control registers (IER/ISR), a FIFO control register (FCR), line status
and control registers (LCR/LSR), modem status and control registers (MCR/MSR),
programmable data rate (clock) control registers (DLL/DLM), and a user accessible
scratchpad register (SPR). Beyond the general 16C554 features and capabilities, the
SC16C654B/654DB offers an enhanced feature register set (EFR, Xon/Xoff1-2) that
provides on-board hardware/software flow control. Register functions are more fully
described in the following paragraphs.
[1] These registers are accessible only when LCR[7] is a logic 0.
[2] These registers are accessible only when LCR[7] is a logic 1.
[3] Enhanced Feature Register, Xon1, 2 and Xoff1, 2 are accessible only when the LCR is set to ‘BFh’.
6.3 FIFO operation
The 64-byte transmit and receive data FIFOs are enabled by the FIFO Control Register
(FCR) bit 0. With SC16C554 devices, the user can set the receive trigger level, but not the
transmit trigger level. The SC16C654B/654DB provides independent trigger levels for both
receiver and transmitter. To remain compatible with SC16C554, the transmit interrupt
trigger level is set to 8 following a reset. It should be noted that the user can set the
transmit trigger levels by writing to the FCR register, but activation will not take place until
EFR[4] is set to a logic 1. The receiver FIFO section includes a time-out function to ensure
data is delivered to the external CPU. An interrupt is generated whenever the Receive
Table 5: Internal registers decoding
A2 A1 A0 Read mode Write mode
General register set (THR/RHR, IER/ISR, MCR/MSR, FCR, LSR, SPR)
[1]
0 0 0 Receive Holding Register Transmit Holding Register
0 0 1 Interrupt Enable Register Interrupt Enable Register
0 1 0 Interrupt Status Register FIFO Control Register
0 1 1 Line Control Register Line Control Register
1 0 0 Modem Control Register Modem Control Register
1 0 1 Line Status Register n/a
1 1 0 Modem Status Register n/a
1 1 1 Scratchpad Register Scratchpad Register
Baud rate register set (DLL/DLM)
[2]
0 0 0 LSB of Divisor Latch LSB of Divisor Latch
0 0 1 MSB of Divisor Latch MSB of Divisor Latch
Enhanced register set (EFR, Xon/off 1-2)
[3]
0 1 0 Enhanced Feature Register Enhanced Feature Register
1 0 0 Xon1 word Xon1 word
1 0 1 Xon2 word Xon2 word
1 1 0 Xoff1 word Xoff1 word
1 1 1 Xoff2 word Xoff2 word
9397 750 14965 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.
Product data sheet Rev. 02 — 20 June 2005 18 of 58
Philips Semiconductors
SC16C654B/654DB
5 V, 3.3 V and 2.5 V quad UART, 5 Mbit/s (max.) with 64-byte FIFOs
Holding Register (RHR) has not been read following the loading of a character or the
receive trigger level has not been reached. (For a description of this timing, see Section
6.4 “Hardware flow control”.)
6.4 Hardware flow control
When automatic hardware flow control is enabled, the SC16C654B/654DB monitors the
CTS pin for a remote buffer overflow indication and controls the RTS pin for local buffer
overflows. Automatic hardware flow control is selected by setting EFR[6] (RTS) and
EFR[7] (CTS) to a logic 1. If CTS transitions from a logic 0 to a logic 1 indicating a flow
control request, ISR[5] will be set to a logic 1 (if enabled via IER[6,7]), and the
SC16C654B/654DB will suspend TX transmissions as soon as the stop bit of the
character in process is shifted out. Transmission is resumed after the CTS input returns to
a logic 0, indicating more data may be sent.
With the Auto RTS function enabled, an interrupt is generated when the receive FIFO
reaches the programmed trigger level. The RTS pin will not be forced to a logic 1
(RTS off), until the receive FIFO reaches the next trigger level. However, the RTS pin will
return to a logic 0 after the data buffer (FIFO) is unloaded to the next trigger level below
the programmed trigger. However, under the above described conditions, the
SC16C654B/654DB will continue to accept data until the receive FIFO is full.
Remark: Hardware flow control is not supported on channel D in the HVQFN48 package.
6.5 Software flow control
When software flow control is enabled, the SC16C654B/654DB compares one or two
sequential receive data characters with the programmed Xon/Xoff or Xoff1,2 character
value(s). If received character(s) match the programmed values, the SC16C654B/654DB
will halt transmission (TX) as soon as the current character(s) has completed
transmission. When a match occurs, the receive ready (if enabled via Xoff IER[5]) flags
will be set and the interrupt output pin (if receive interrupt is enabled) will be activated.
Following a suspension due to a match of the Xoff characters’ values, the
SC16C654B/654DB will monitor the receive data stream for a match to the Xon1,2
character value(s). If a match is found, the SC16C654B/654DB will resume operation and
clear the flags (ISR[4]). The SC16C654B/654DB offers a special Xon mode via MCR[5].
The initialized default setting of MCR[5] is a logic 0. In this state, Xoff and Xon will operate
as defined above. Setting MCR[5] to a logic 1 sets a special operational mode for the Xon
function. In this case, Xoff operates normally, however, transmission (Xon) will resume
with the next character received, that is, a match is declared simply by the receipt of an
incoming (RX) character.
Table 6: RX trigger levels
Selected trigger level
(characters)
INT pin activation Negate RTS or
send Xoff
(characters)
Assert RTS or
send Xon
(characters)
8 8 16 0
16 16 56 8
56 56 60 16
60 60 60 56

SC16C654BIA68,518

Mfr. #:
Manufacturer:
NXP Semiconductors
Description:
UART Interface IC 16CB 2.5V-5V 4CH
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union