DS1867
4 of 14 102199
TIMING DIAGFRAMS Figure 2
(a) 3-Wire Serial Interface General Overview
DS1867
5 of 14 102199
I/O SHIFT REGISTER Figure 3
17-BIT I/O SHIFT REGISTER
Transmission of data always begins with the stack select bit followed by the potentiometer-1 wiper
position value and lastly the potentiometer-0 wiper position value (see Figure 2(a)).
When wiper position data is to be written to the DS1867, 17-bits (or some integer multiple) of data should
always be transmitted. Transactions which do not send a complete 17-bits (or multiple) will leave the
register incomplete and possibly an error in desired wiper position. After a communication transaction
has been completed the RST signal input should be taken to a low state to prevent any inadvertent
changes to the device shift register. Once RST has reached a low state, the contents of the I/O shift
register are loaded into the respective multiplexers for setting wiper position. A new wiper position will
only engage pending a RST transition to the low state. The wiper position for the high-end terminals H0
and H1 will have data values FF (hex), while the low-end terminals will have data values 00 (hex).
STACKED CONFIGURATION
The potentiometers of the DS1867 can be connected in series as shown in Figure 4. This is referred to as
the stacked configuration and allows the user to double the total end-to-end resistance of the part. The
resolution of the combined potentiometers will remain the same as a single potentiometer but with a total
of 512 wiper positions available. Device resolution is defined as R
TOT
/256 (per potentiometer); where
R
TOT
is equal to the device resistance value. The wiper output for the combined stacked potentiometer will
be taken at the S
out
pin, which is the multiplexed output of the wiper of potentiometer-0 (W0) or
potentiometer-1 (W1). The potentiometer wiper selected at the S
out
output is governed by the setting of
the stack select bit (bit-0) of the 17-bit I/O shift register. If the stack select bit has value 0, the multiplexed
output, S
out
, will be that of the potentiometer-0 wiper. If the stack select bit has value 1, the multiplexed
output, S
out
, will be that of the potentiometer-1 wiper.
STACKED CONFIGURATION Figure 4
CASCADE OPERATION
A feature of the DS1867 is the ability to control multiple devices from a single processor. Multiple
DS1867s can be linked or daisy-chained as shown in Figure 5. As a data bit is entered into the I/O shift
register of the DS1867 it will appear at the C
out
output after a maximum delay of 70 nanoseconds.
DS1867
6 of 14 102199
The C
out
output of the DS1867 can be used to drive the DQ input of another DS1867. When connecting
multiple devices, the total number of bits sent is always 17 times the number of DS1867s in the daisy
chain.
An optional feedback resistor can be placed between the C
out
terminal of the last device and the DQ input
of the first DS1867, thus allowing the controlling processor to read, as well as, write data or circularly
clock data through the daisy chain. The value of the feedback or isolation resistor should be in the range
from 2 to 10 kohms.
When reading data via the C
OUT
pin and isolation resistor, the DQ line is left floating by the reading
device. When RST is driven high, bit 17 is present on the C
OUT
pin, which is fed back to the input DQ pin
through the isolation resistor. When the CLK input transitions low to high, bit 17 is loaded into the first
position of the I/O shift register and bit 16 becomes present on C
OUT
and DQ of the next device. After 17
bits (or 17 times the number of DS1867s in the daisy chain), the data has shifted completely around and
back to its original position. When RST transitions to the low state to end data transfer, the value (the
same as before the read occurred) is loaded into the wiper-0, wiper-1, and stack select bit I/O register.
CASCADING MULTIPLE DEVICES Figure 5
NONVOLATILE WIPER SETTINGS
The DS1867 maintains the position of the wiper in the absence of power. This feature is provided through
the use of EEPROM type memory cell arrays. During normal operation, the position of the wiper is
determined by the device multiplexers and stored in the shadow memory (EEPROM). The manner in
which an update occurs has been optimized for reliability, durability, and performance. Additionally, the
update operation is totally transparent to the user.
When power is applied to the DS1867, wiper settings will be the last recorded in the EEPROM memory
cells or shadow memory before the last power-down. Changes to the EEPROM memory cells occur
during a predefined power-down sequence. If the DS1867 detects a voltage transition to 4.5 volts or less,
on the power supply input, the part initiates an automatic wiper storage sequence. This storage sequence
will save in EEPROM memory the contents of the I/O shift register before a total power-shutdown;
provided specific power-down timing requirements are met. The minimum total power-down time is
specified at 4 milliseconds. Power-down timing requirements on V
CC
are shown in Figure 6.
The EEPROM memory cells are specified to accept greater than 25,000 writes before a wear-out
condition. If the EEPROM memory cells do reach a wear-out condition, the DS1867 will still function
properly while power is applied. A minimum time of 4 ms between 4.5V and 3V is required to perform
the proper position storage of the wiper.

DS1867S-10+

Mfr. #:
Manufacturer:
Maxim Integrated
Description:
Digital Potentiometer ICs Dual w/EEPROM
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union