1.3 General notes on soldering
Permissible heat exposure loads on film capacitors are primarily characterized by the upper cate-
gory temperature T
max
. Long exposure to temperatures above this type-related temperature limit
can lead to changes in the plastic dielectric and thus change irreversibly a capacitor's electrical
characteristics. For short exposures (as in practical soldering processes) the heat load (and thus
the possible effects on a capacitor) will also depend on other factors like:
Pre-heating temperature and time
Forced cooling immediately after soldering
Terminal characteristics:
diameter, length, thermal resistance, special configurations (e.g. crimping)
Height of capacitor above solder bath
Shadowing by neighboring components
Additional heating due to heat dissipation by neighboring components
Use of solder-resist coatings
The overheating associated with some of these factors can usually be reduced by suitable coun-
termeasures. For example, if a pre-heating step cannot be avoided, an additional or reinforced
cooling process may possibly have to be included.
EPCOS recommends the following conditions:
Pre-heating with a maximum temperature of 110 °C
Temperature inside the capacitor should not exceed the following limits:
MKP/MFP 110 °C
MKT 160 °C
When SMD components are used together with leaded ones, the leaded film capacitors should
not pass into the SMD adhesive curing oven. The leaded components should be assembled af-
ter the SMD curing step.
Leaded film capacitors are not suitable for reflow soldering.
Uncoated capacitors
For uncoated MKT capacitors with lead spacings 10 mm (B32560/B32561) the following mea-
sures are recommended:
pre-heating to not more than 110 °C in the preheater phase
rapid cooling after soldering
B32537
High reliability (wound)
Page 12 of 20Please read Cautions and warnings and
Important notes at the end of this document.
2 Cleaning
To determine whether the following solvents, often used to remove flux residues and other sub-
stances, are suitable for the capacitors described, refer to the table below:
Type Ethanol,
isopropanol,
n-propanol
n-propanol-water
mixtures,
water with surface
tension-reducing
tensides (neutral)
Solvent from
table A (see
next page)
Solvent from
table B (see
next page)
MKT
(uncoated)
Suitable Unsuitable In part suitable Unsuitable
MKT, MKP, MFP
(coated/boxed)
Suitable Suitable
Even when suitable solvents are used, a reversible change of the electrical characteristics may
occur in uncoated capacitors immediately after they are washed. Thus it is always recommended
to dry the components (e.g. 4 h at 70 °C) before they are subjected to subsequent electrical test-
ing.
Table A
Manufacturers' designations for trifluoro-trichloro-ethane-based cleaning solvents (selection)
Trifluoro-trichloro-
ethane
Mixtures of trifluoro-trichloro-ethane with ethanol and
isopropanol
Manufacturer
Freon TF Freon TE 35; Freon TP 35; Freon TES Du Pont
Frigen 113 TR Frigen 113 TR-E; Frigen 113 TR-P; Frigen TR-E 35 Hoechst
Arklone P Arklone A; Arklone L; Arklone K ICI
Kaltron 113 MDR Kaltron 113 MDA; Kaltron 113 MDI; Kaltron 113 MDI 35 Kali-Chemie
Flugene 113 Flugene 113 E; Flugene 113 IPA Rhone-Progil
Table B (worldwide banned substances)
Manufacturers' designations for unsuitable cleaning solvents (selection)
Mixtures of chlorinated hydrocarbons and ketones with fluorated hydrocarbons Manufacturer
Freon TMC; Freon TA; Freon TC Du Pont
Arklone E ICI
Kaltron 113 MDD; Kaltron 113 MDK Kali-Chemie
Flugene 113 CM Rhone-Progil
B32537
High reliability (wound)
Page 13 of 20Please read Cautions and warnings and
Important notes at the end of this document.
3 Embedding of capacitors in finished assemblies
In many applications, finished circuit assemblies are embedded in plastic resins. In this case,
both chemical and thermal influences of the embedding ("potting") and curing processes must be
taken into account.
Our experience has shown that the following potting materials can be recommended: non-flexible
epoxy resins with acid-anhydride hardeners; chemically inert, non-conducting fillers; maximum
curing temperature of 100 °C.
Caution:
Consult us first if you wish to embed uncoated types!
B32537
High reliability (wound)
Page 14 of 20Please read Cautions and warnings and
Important notes at the end of this document.

B32537B1154K

Mfr. #:
Manufacturer:
EPCOS / TDK
Description:
Film Capacitors 0.15uF 100volts 10% Axial
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union