SBCW30LT1G

BCW30LT1G, SBCW30LT1G
www.onsemi.com
4
TYPICAL STATIC CHARACTERISTICS
Figure 6. DC Current Gain
I
C
, COLLECTOR CURRENT (mA)
500
0.003
h , DC CURRENT GAIN
FE
T
J
= 125°C
-55°C
25°C
V
CE
= 1.0 V
V
CE
= 10 V
Figure 7. Collector Saturation Region
I
C
, COLLECTOR CURRENT (mA)
1.4
Figure 8. Collector Characteristics
I
C
, COLLECTOR CURRENT (mA)
V, VOLTAGE (VOLTS)
1.0 2.0 5.0 10 20
50
1.6
100
T
J
= 25°C
V
BE(sat)
@ I
C
/I
B
= 10
V
CE(sat)
@ I
C
/I
B
= 10
V
BE(on)
@ V
CE
= 1.0 V
*q
VC
for V
CE(sat)
q
VB
for V
BE
0.1 0.2 0.5
BCW29LT1
Figure 9. “On” Voltages
I
B
, BASE CURRENT (mA)
0.4
0.6
0.8
1.0
0.2
0
V
CE
, COLLECTOR-EMITTER VOLTAGE (VOLTS)
0.002
T
A
= 25°C
BCW29LT1
I
C
= 1.0 mA 10 mA 100 mA
Figure 10. Temperature Coefficients
50 mA
V
CE
, COLLECTOR-EMITTER VOLTAGE (VOLTS)
40
60
80
100
20
0
0
I
C
, COLLECTOR CURRENT (mA)
T
A
= 25°C
PULSE WIDTH = 300 ms
DUTY CYCLE 2.0%
I
B
= 400 mA
350 mA
300 mA
250 mA
200 mA
*APPLIES for I
C
/I
B
h
FE
/2
25°C to 125°C
-55°C to 25°C
25°C to 125°C
-55°C to 25°C
140
160
0.005 0.01 0.02 0.03 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0
2.0
3.0
5.0 7.0 10 20 30 50 70 100
0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 5.0 10 15 20 25 30 35 40
1.2
1.0
0.8
0.6
0.4
0.2
0
2.4
0.8
0
1.6
0.8
1.0 2.0 5.0 10 20
50
10
0
0.1 0.2 0.5
300
200
180
V
, TEMPERATURE COEFFICIENTS (mV/ C)°θ
150 mA
100 mA
50 mA
BCW30LT1G, SBCW30LT1G
www.onsemi.com
5
TYPICAL DYNAMIC CHARACTERISTICS
C, CAPACITANCE (pF)
Figure 11. Turn−On Time
I
C
, COLLECTOR CURRENT (mA)
500
Figure 12. Turn−Off Time
I
C
, COLLECTOR CURRENT (mA)
2.0 5.0 10
20 30 50
1000
Figure 13. Current−Gain — Bandwidth Product
I
C
, COLLECTOR CURRENT (mA)
Figure 14. Capacitance
V
R
, REVERSE VOLTAGE (VOLTS)
Figure 15. Input Impedance
I
C
, COLLECTOR CURRENT (mA)
Figure 16. Output Admittance
I
C
, COLLECTOR CURRENT (mA)
3.01.0
500
0.5
10
t, TIME (ns)
t, TIME (ns)
f, CURRENT-GAIN — BANDWIDTH PRODUCT (MHz)
T
h , OUTPUT ADMITTANCE ( mhos)
oe
m
h
ie
, INPUT IMPEDANCE (k )Ω
5.0
7.0
10
20
30
50
70
100
300
7.0
70 100
V
CC
= 3.0 V
I
C
/I
B
= 10
T
J
= 25°C
t
d
@ V
BE(off)
= 0.5 V
t
r
10
20
30
50
70
100
200
300
500
700
- 2.0
-1.0
V
CC
= - 3.0 V
I
C
/I
B
= 10
I
B1
= I
B2
T
J
= 25°C
t
s
t
f
50
70
100
200
300
0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 50
T
J
= 25°C
V
CE
= 20 V
5.0 V
1.0
2.0
3.0
5.0
7.0
0.1 0.2 0.5 1.0 2.0 5.0 10 20 500.05
C
ib
C
ob
2.0 5.0 10
20 50
1.0
0.2
100
0.3
0.5
0.7
1.0
2.0
3.0
5.0
7.0
10
20
0.1 0.2 0.5
V
CE
= -10 Vdc
f = 1.0 kHz
T
A
= 25°C
2.0 5.0 10
20 50
1.0
2.0
100
3.0
5.0
7.0
10
20
30
50
70
100
200
0.1 0.2 0.5
V
CE
= 10 Vdc
f = 1.0 kHz
T
A
= 25°C
200
- 3.0
- 5.0 - 7.0
- 20
-10
- 30
- 50 - 70
-100
T
J
= 25°C
h
fe
300
@ I
C
= -1.0 mA
h
fe
300
@ I
C
= 1.0 mA
BCW30LT1G, SBCW30LT1G
www.onsemi.com
6
Figure 17. Thermal Response
t, TIME (ms)
1.0
0.01
r(t) TRANSIENT THERMAL RESISTANCE
(NORMALIZED)
0.01
0.02
0.03
0.05
0.07
0.1
0.2
0.3
0.5
0.7
0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 200 500 1.0k 2.0k 5.0k 10k 20k
50k
100k
D = 0.5
0.2
0.1
0.05
0.02
0.01
SINGLE PULSE
DUTY CYCLE, D = t
1
/t
2
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t
1
(SEE AN-569)
Z
q
JA(t)
= r(t) R
q
JA
T
J(pk)
- T
A
= P
(pk)
Z
q
JA(t)
t
1
t
2
P
(pk)
FIGURE 19
T
J
, JUNCTION TEMPERATURE (°C)
10
4
-4
0
I
C
, COLLECTOR CURRENT (nA)
Figure 18. Typical Collector Leakage Current
DESIGN NOTE: USE OF THERMAL RESPONSE DATA
A train of periodical power pulses can be represented by the model
as shown in Figure 19. Using the model and the device thermal
response the normalized effective transient thermal resistance of
Figure 17 was calculated for various duty cycles.
To find Z
q
JA(t)
, multiply the value obtained from Figure 17 by the
steady state value R
q
JA
.
Example:
The BCW29LT1 is dissipating 2.0 watts peak under the following
conditions:
t
1
= 1.0 ms, t
2
= 5.0 ms (D = 0.2)
Using Figure 17 at a pulse width of 1.0 ms and D = 0.2, the reading of
r(t) is 0.22.
The peak rise in junction temperature is therefore
DT = r(t) x P
(pk)
x R
q
JA
= 0.22 x 2.0 x 200 = 88°C.
For more information, see AN−569.
10
-2
10
-1
10
0
10
1
10
2
10
3
-2
0
0 + 20 + 40 + 60 + 80 + 100 + 120 + 140 + 160
V
CC
= 30 V
I
CEO
I
CBO
AND
I
CEX
@ V
BE(off)
= 3.0 V

SBCW30LT1G

Mfr. #:
Manufacturer:
ON Semiconductor
Description:
Bipolar Transistors - BJT SILICON TRANSISTOR PLAST
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet