HCPL-814-000E

4
HCPL-814-300E
Solder Reow Temperature Prole
1) One-time soldering reow is recommended within
the condition of temperature and time prole shown
at right.
2) When using another soldering method such as infrared
ray lamp, the temperature may rise partially in the mold
of the device. Keep the temperature on the package of
the device within the condition of (1) above.
30 seconds
60 ~ 150 sec 90 sec 60 sec
60 sec
25°C
150°C
200°C
250°C
260°C (Peak Temperature)
217°C
Time (sec)
Temperature
(
°
C)
Absolute Maximum Ratings
Parameters Symbol Min. Max. Units
Storage Temperature T
S
–55 125 ˚C
Ambient Operating Temperature T
A
–30 100 ˚C
Lead Solder Temperature for 10s T
sol
260 ˚C
(1.6 mm below seating plane)
Average Forward Current I
F
±50 mA
Input Power Dissipation P
I
70 mW
Collector Current I
C
50 mA
Collector-Emitter Voltage V
CEO
35 V
Emitter-Collector Voltage V
ECO
6 V
Collector Power Dissipation P
C
150 mW
Total Power Dissipation P
tot
200 mW
Isolation Voltage V
iso
5000 V
rms
(AC for 1 minute, R.H. = 40 ~ 60%)
[1]
6.5 ± 0.5
(0.256)
DIMENSIONS IN MILLIMETERS AND (INCHES)
4.6 ± 0.5
(0.181)
2.54 ± 0.25
(0.1)
3.5 ± 0.5
(0.138)
7.62 ± 0.3
(0.3)
0.26
(0.010)
10.16 ± 0.3
(0.4)
1.2 ± 0.1
(0.047)
0.35 ± 0.25
(0.014)
1.0 ± 0.25
(0.039)
A 814
Y W W
DATE CODE
RANK
LEAD FREE
ANODE
Note: Non-halide ux should be used.
Figure 1. Forward current vs. temperature. Figure 2. Collector power dissipation vs. tempera-
ture.
Figure 3. Collector-emitter saturation voltage vs.
forward current.
Rank Mark CTR (%) Conditions
A 50 ~ 150 I
F
= ±1 mA,
No Mark 20 ~ 300 V
CE
= 5 V,
T
A
= 25˚C
Notes:
1. Isolation voltage shall be measured using the following method:
(a) Short between anode and cathode on the primary side and between collector and emitter
on the secondary side.
(b) The isolation voltage tester with zero-cross circuit shall be used.
(c) The waveform of applied voltage shall be a sine wave.
2.
CTR = x 100%
I
C
I
F
Electrical Specications (T
A
= 25˚C)
Parameter Symbol Min. Typ. Max. Units Test Conditions
Forward Voltage V
F
1.2 1.4 V I
F
= ±20 mA
Terminal Capacitance C
t
50 250 pF V = 0, f = 1 kHz
Collector Dark Current I
CEO
100 nA V
CE
= 20 V, I
F
= 0
Collector-Emitter Breakdown Voltage BV
CEO
35 V I
C
= 0.1 mA, I
F
= 0
Emitter-Collector Breakdown Voltage BV
ECO
6 V I
E
= 10 µA, I
F
= 0
Collector Current I
C
0.2 3 mA I
F
= ±1 mA,
Current Transfer Ratio
[2]
CTR 20 300 % V
CE
= 5 V
Collector-Emitter Saturation Voltage V
CE(sat)
0.1 0.2 V I
F
= ±20 mA, I
C
= 1 mA
Isolation Resistance R
iso
5 x 10
10
1 x 10
11
DC 500 V
40 ~ 60% R.H.
Floating Capacitance C
f
0.6 1 pF V = 0, f = 1 MHz
Cut-o Frequency f
c
15 80 kHz V
CE
= 5 V, I
C
= 2 mA
R
L
= 100 , –3 dB
Response Time (Rise) t
r
4 18 µs V
CE
= 2 V, I
C
= 2 mA,
Response Time (Fall) t
f
3 18 µs R
L
= 100
0
I
F
– FORWARD CURRENT – mA
10.0 15.0
2
5.00
HCPL-354 fig 3
1
3
4
5
6
V
CE(SAT.)
– COLLECTOR-EMITTER
SATURATION VOLTAGE – V
T
A
= 25°C
I
C
= 0.5 mA
I
C
= 1 mA
I
C
= 3 mA
I
C
= 5 mA
I
C
= 7 mA
2.5 7.5 12.5
I
F
– FORWARD CURRENT – mA
0
T
A
– AMBIENT TEMPERATURE – °C
75 125
50
25
10
40
0 50 100-30
60
HCPL-814 fig 1
30
20
P
C
– COLLECTOR POWER DISSIPATION – mW
0
T
A
– AMBIENT TEMPERATURE – °C
100
50
200
150
HCPL-814 fig 2
75 125250 50 100-30
6
I
F
– FORWARD CURRENT – mA
1
V
F
– FORWARD VOLTAGE – V
2.0 3.0
10
5
500
1.00
HCPL-354 fig 4
T
A
= 75°C
0.5 1.5 2.5
2
20
50
100
200
T
A
= 50°C
T
A
= 25°C
T
A
= 0°C
T
A
= -25°C
Figure 4. Forward current vs. forward voltage.
Figure 5. Current transfer ratio vs. forward current. Figure 6. Collector current vs. collector-emitter volt-
age.
Figure 7. Relative current transfer ratio vs. tempera-
ture.
Figure 8. Collector-emitter saturation voltage vs.
temperature.
Figure 9. Collector dark current vs. temperature.
0
I
F
– FORWARD CURRENT – mA
10 100
40
0.20.1
HCPL-814 fig 5
20
60
120
140
CTR – CURRENT TRANSFER RATIO – %
80
100
0.5 201 5052
V
CE
= 5 V
T
A
= 25°C
I
C
– COLLECTOR CURRENT – mA
0
V
CE
– COLLECTOR-EMITTER VOLTAGE – V
6 10
40
20
50
30
HCPL-814 fig 6
P
C
(MAX.)
T
A
= 25°C
I
F
= 30 mA
I
F
= 20 mA
I
F
= 5 mA
30
10
1 2 4 5 7 8 9
I
F
= 1 mA
I
F
= 10 mA
V
CE(SAT.)
– COLLECTOR-EMITTER
SATURATION VOLTAGE – V
0
0.10
0.02
HCPL-814 fig 8
I
C
= 1 mA
I
F
= 20 mA
T
A
– AMBIENT TEMPERATURE – °C
8040-30 60 100
0.04
0.06
0.08
200
I
CEO
– COLLECTOR DARK CURRENT – A
HCPL-814 fig 9
T
A
– AMBIENT TEMPERATURE – °C
10
-12
10
-11
10
-10
10
-9
10
-8
10
-7
80400 60 100-30
10
-6
20
RELATIVE CURRENT TRANSFER RATIO – %
0
100
50
150
HCPL-814 fig 7
V
CE
= 5 V
I
F
= 5 mA
T
A
– AMBIENT TEMPERATURE – °C
75250 50 100-30
Figure 10. Response time vs. load resistance.
Figure 11. Frequency response.
RESPONSE TIME – µs
0.1
R
L
– LOAD RESISTANCE – k
0.1 5
1
0.5
0.2
0.5
0.2 2 10
2
HCPL-814 fig 10
1
5
10
20
50
100
V
CE
= 2 V
I
C
= 2 mA
T
A
= 25°C
t
f
t
r
t
s
t
d
VOLTAGE GAIN AV – dB
f – FREQUENCY – kHz
0.5 102
-20
-10
1 50.2
0
HCPL-814 fig 11
100
R
L
= 10 k
R
L
= 1 k
R
L
= 100
1000
V
CE
= 2 V
I
C
= 2 mA
T
A
= 25°C

HCPL-814-000E

Mfr. #:
Manufacturer:
Broadcom / Avago
Description:
Transistor Output Optocouplers 5000 Vrms 20% CTR
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union