AD8655/AD8656 Data Sheet
Rev. E | Page 16 of 20
APPLICATIONS INFORMATION
INPUT OVERVOLTAGE PROTECTION
The internal protective circuitry of the AD8655/AD8656 allows
voltages exceeding the supply to be applied at the input. It is
recommended, however, not to apply voltages that exceed the
supplies by more than 0.3 V at either input of the amplifier. If a
higher input voltage is applied, series resistors should be used to
limit the current flowing into the inputs. The input current
should be limited to less than 5 mA.
The extremely low input bias current allows the use of larger
resistors, which allows the user to apply higher voltages at the
inputs. The use of these resistors adds thermal noise, which
contributes to the overall output voltage noise of the amplifier.
For example, a 10 kΩ resistor has less than 12.6 nV/√Hz of
thermal noise and less than 10 nV of error voltage at room
temperature.
INPUT CAPACITANCE
Along with bypassing and ground, high speed amplifiers can be
sensitive to parasitic capacitance between the inputs and ground.
For circuits with resistive feedback network, the total capacitance,
whether it is the source capacitance, stray capacitance on the
input pin, or the input capacitance of the amplifier, causes a
breakpoint in the noise gain of the circuit. As a result, a
capacitor must be added in parallel with the gain resistor to
obtain stability. The noise gain is a function of frequency and
peaks at the higher frequencies, assuming the feedback capaci-
tor is selected to make the second-order system critically damped.
A few picofarads of capacitance at the input reduce the input
impedance at high frequencies, which increases the amplifier’s
gain, causing peaking in the frequency response or oscillations.
With the AD8655/AD8656, additional input damping is required
for stability with capacitive loads greater than 200 pF with
direct input to output feedback. See the Driving Capacitive
Loads section.
DRIVING CAPACITIVE LOADS
Although the AD8655/AD8656 can drive capacitive loads up to
500 pF without oscillating, a large amount of ringing is present
when operating the part with input frequencies above 100 kHz.
This is especially true when the amplifiers are configured in
positive unity gain (worst case). When such large capacitive
loads are required, the use of external compensation is highly
recommended. This reduces the overshoot and minimizes
ringing, which, in turn, improves the stability of the AD8655/
AD8656 when driving large capacitive loads.
One simple technique for compensation is a snubber that
consists of a simple RC network. With this circuit in place,
output swing is maintained, and the amplifier is stable at all
gains. Figure 55 shows the implementation of a snubber, which
reduces overshoot by more than 30% and eliminates ringing.
Using a snubber does not recover the loss of bandwidth
incurred from a heavy capacitive load.
Figure 54. Driving Heavy Capacitive Loads Without Compensation
Figure 55. Snubber Network
Figure 56. Driving Heavy Capacitive Loads Using a Snubber Network
TIME (2µ
s/DIV)
V
S
= ±2.5V
A
V
= 1
C
L
= 500pF
05304-051
VOLTAGE (100mV/DIV)
+IN
200Ω
500pF
500pF
–IN
V
CC
V
EE
200mV
+
05304-052
+
V
S
= ±
2.5V
A
V
= 1
R
S
= 200
C
S
= 500pF
C
L
= 500pF
TIME (10µs/DIV)
05304-053
VOLTAGE (100mV/DIV)
Data Sheet AD8655/AD8656
Rev. E | Page 17 of 20
THD Readings vs. Common-Mode Voltage
Total harmonic distortion of the AD8655/AD8656 is well below
0.0007% with a load of 1 kΩ. This distortion is a function of the
circuit configuration, the voltage applied, and the layout, in
addition to other factors.
Figure 57. THD + N Test Circuit
Figure 58. THD + Noise vs. Frequency
+
V
IN
R
L
V
OUT
+2.5V
–2.5V
AD8655
05304-054
1.0
0.1
0.01
0.001
0.0001
%
20 100 1k 10k 80k50 500 5k 50k200 2k 20k
Hz
0.5
0.05
0.005
0.0005
0.2
0.02
0.002
0.0002
SWEEP 1:
V
IN
= 2V p-p
R
L
= 10k
SWEEP 2:
V
IN
= 2V p-p
R
L
= 1k
SWEEP 1
SWEEP 2
05304-055
AD8655/AD8656 Data Sheet
Rev. E | Page 18 of 20
LAYOUT, GROUNDING, AND BYPASSING CONSIDERATIONS
POWER SUPPLY BYPASSING
Power supply pins can act as inputs for noise, so care must be
taken to apply a noise-free, stable dc voltage. The purpose of
bypass capacitors is to create low impedances from the supply
to ground at all frequencies, thereby shunting or filtering most
of the noise. Bypassing schemes are designed to minimize the
supply impedance at all frequencies with a parallel combination
of capacitors with values of 0.1 µF and 4.7 µF. Chip capacitors
of 0.1 µF (X7R or NPO) are critical and should be as close as
possible to the amplifier package. The 4.7 µF tantalum capacitor
is less critical for high frequency bypassing, and, in most cases,
only one is needed per board at the supply inputs.
GROUNDING
A ground plane layer is important for densely packed PC
boards to minimize parasitic inductances. This minimizes
voltage drops with changes in current. However, an under-
standing of where the current flows in a circuit is critical to
implementing effective high speed circuit design. The length
of the current path is directly proportional to the magnitude
of parasitic inductances, and, therefore, the high frequency
impedance of the path. Large changes in currents in an
inductive ground return create unwanted voltage noise.
The length of the high frequency bypass capacitor leads is
critical, and, therefore, surface-mount capacitors are recom-
mended. A parasitic inductance in the bypass ground trace
works against the low impedance created by the bypass
capacitor. Because load currents flow from the supplies, the
ground for the load impedance should be at the same physical
location as the bypass capacitor grounds. For larger value
capacitors intended to be effective at lower frequencies, the
current return path distance is less critical.
LEAKAGE CURRENTS
Poor PC board layout, contaminants, and the board insulator
material can create leakage currents that are much larger than
the input bias current of the AD8655/AD8656. Any voltage
differential between the inputs and nearby traces creates leakage
currents through the PC board insulator, for example, 1 V/100
GΩ = 10 pA. Similarly, any contaminants on the board can
create significant leakage (skin oils are a common problem).
To significantly reduce leakage, put a guard ring (shield) around
the inputs and input leads that are driven to the same voltage
potential as the inputs. This ensures there is no voltage potential
between the inputs and the surrounding area to create any
leakage currents. To be effective, the guard ring must be driven
by a relatively low impedance source and should completely
surround the input leads on all sides, above and below, by using
a multilayer board.
The charge absorption of the insulator material itself can also
cause leakage currents. Minimizing the amount of material
between the input leads and the guard ring helps to reduce the
absorption. Also, using low absorption materials, such as
Teflon® or ceramic, may be necessary in some instances.

AD8656ARZ-REEL7

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Precision Amplifiers Low Noise Prec CMOS Dual
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union