MAX6648/MAX6692
Precision SMBus-Compatible Remote/Local
Temperature Sensors with Overtemperature Alarms
______________________________________________________________________________________________________________________________________________________________________________
7
2) If the MAX6648/MAX6692 are in run mode, read the
status byte. If the BUSY bit indicates that a conversion
is in progress, wait until the conversion is complete
(BUSY bit set to zero) before reading the temperature
data. Following a conversion completion, immediately
read the contents of the temperature data registers. If
no conversion is in progress, the data can be read
within a few microseconds, which is a sufficiently short
period of time to ensure that a new conversion cannot
be completed until after the data has been read.
SMBCLK
AB CD
E
FG H
I
J
K
SMBDATA
t
SU:STA
t
HD:STA
t
LOW
t
HIGH
t
SU:DAT
t
HD:DAT
t
SU:STO
t
BUF
A = START CONDITION
B = MSB OF ADDRESS CLOCKED INTO SLAVE
C = LSB OF ADDRESS CLOCKED INTO SLAVE
D = R/W BIT CLOCKED INTO SLAVE
E = SLAVE PULLS SMBDATA LINE LOW
L
M
F = ACKNOWLEDGE BIT CLOCKED INTO MASTER
G = MSB OF DATA CLOCKED INTO MASTER
H = LSB OF DATA CLOCKED INTO MASTER
I = MASTER PULLS DATA LINE LOW
J = ACKNOWLEDGE CLOCKED INTO SLAVE
K = ACKNOWLEDGE CLOCK PULSE
L = STOP CONDITION
M = NEW START CONDITION
Figure 2. SMBus Write Timing Diagram
Write Byte Format
Read Byte Format
Send Byte Format
Receive Byte Format
Slave Address: equiva-
lent to chip-select line of
a 3-wire interface
Command Byte: selects which
register you are writing to
Data Byte: data goes into the register
set by the command byte (to set
thresholds, configuration masks, and
sampling rate)
Slave Address: equiva-
lent to chip-select line
Command Byte: selects
which register you are
reading from
Slave Address: repeated
due to change in data-
flow direction
Data Byte: reads from
the register set by the
command byte
Command Byte: sends com-
mand with no data, usually
used for one-shot command
Data Byte: reads data from
the register commanded
by the last Read Byte or
Write Byte transmission;
also used for SMBus Alert
Response return address
S = Start condition Shaded = Slave transmission
P = Stop condition /// = Not acknowledged
Figure 1. SMBus Protocols
S ADDRESS RD ACK DATA /// P
7 bits 8 bits
WRS ACK COMMAND ACK P
8 bits
ADDRESS
7 bits
P
1
ACKDATA
8 bits
ACKCOMMAND
8 bits
ACKWRADDRESS
7 bits
S
S ADDRESS WR ACK COMMAND ACK S ADDRESS
7 bits8 bits7 bits
RD ACK DATA
8 bits
/// P
MAX6648/MAX6692
Precision SMBus-Compatible Remote/Local
Temperature Sensors with Overtemperature Alarms
8
______________________________________________________________________________________________________________________________________________________________________________
SMBCLK
A = START CONDITION
B = MSB OF ADDRESS CLOCKED INTO SLAVE
C = LSB OF ADDRESS CLOCKED INTO SLAVE
D = R/W BIT CLOCKED INTO SLAVE
AB CD
E
FG
HIJ
SMBDATA
t
SU:STA
t
HD:STA
t
LOW
t
HIGH
t
SU:DAT
t
SU:STO
t
BUF
LMK
E = SLAVE PULLS SMBDATA LINE LOW
F = ACKNOWLEDGE BIT CLOCKED INTO MASTER
G = MSB OF DATA CLOCKED INTO SLAVE
H = LSB OF DATA CLOCKED INTO SLAVE
I = MASTER PULLS DATA LINE LOW
J = ACKNOWLEDGE CLOCKED INTO SLAVE
K = ACKNOWLEDGE CLOCK PULSE
L = STOP CONDITION
M = NEW START CONDITION
Figure 3. SMBus Read Timing Diagram
Alarm Threshold Registers
Four registers store ALERT threshold values—one high-
temperature (T
HIGH
) and one low-temperature (T
LOW
)
register each for the local and remote channels. If
either measured temperature equals or exceeds the
corresponding ALERT threshold value, the ALERT inter-
rupt asserts.
The power-on-reset (POR) state of both ALERT T
HIGH
registers is full scale (0101 0101, or +85°C). The POR
state of both T
LOW
registers is 0000 0000, or 0°C.
Two additional registers store remote and local alarm
threshold data corresponding to the OVERT output. The
values stored in these registers are high-temperature
thresholds. If either of the measured temperatures
equals or exceeds the corresponding alarm threshold
value, an OVERT output asserts. The POR state of the
OVERT threshold is 0110 1110 or +110°C for the
MAX6648, and 0101 0101 or +85°C for the MAX6692.
Diode Fault Alarm
A continuity fault detector at DXP detects an open cir-
cuit between DXP and DXN, or a DXP short to V
CC
,
GND, or DXN. If an open or short circuit exists, the
external temperature register is loaded with 1000 0000.
If the fault is an open-circuit fault bit 2 (OPEN) of the
status byte, it is set to 1 and the ALERT condition is
activated at the end of the conversion. Immediately
after POR, the status register indicates that no fault is
present. If a fault is present upon power-up, the fault is
not indicated until the end of the first conversion.
ALERT
Interrupts
The ALERT interrupt occurs when the internal or exter-
nal temperature reading exceeds a high- or low-tem-
perature limit (user programmed) or when the remote
diode is disconnected (for continuity fault detection).
The ALERT interrupt output signal is latched and can
be cleared only by either reading the status register or
by successfully responding to an alert response
address. In both cases, the alert is cleared only if the
fault condition no longer exists. Asserting ALERT does
not halt automatic conversion. The ALERT output pin is
open drain, allowing multiple devices to share a com-
mon interrupt line.
The MAX6648/MAX6692 respond to the SMBus alert
response address, an interrupt pointer return-address
feature (see the
Alert Response Address
section). Prior
to taking corrective action, always check to ensure that
an interrupt is valid by reading the current temperature.
Fault Queue Register
In some systems, it may be desirable to ignore a single
temperature measurement that falls outside the ALERT
limits. Bits 2 and 3 of the fault queue register (address
22h) determine the number of consecutive temperature
faults necessary to set ALERT (see Tables 3 and 4).
Alert Response Address
The SMBus alert response interrupt pointer provides
quick fault identification for simple slave devices that
lack the complex, expensive logic needed to be a bus
master. Upon receiving an ALERT interrupt signal, the
host master can broadcast a receive byte transmission
to the alert response slave address (0001 100).
Following such a broadcast, any slave device that gen-
erated an interrupt attempts to identify itself by putting
its own address on the bus.
The alert response can activate several different slave
devices simultaneously, similar to the I
2
C general call. If
more than one slave attempts to respond, bus arbitration
rules apply, and the device with the lower address
code wins. The losing device does not generate an
MAX6648/MAX6692
Precision SMBus-Compatible Remote/Local
Temperature Sensors with Overtemperature Alarms
______________________________________________________________________________________________________________________________________________________________________________
9
acknowledge and continues to hold the ALERT line low
until cleared. (The conditions for clearing an ALERT
vary, depending on the type of slave device).
Successful completion of the read alert response proto-
col clears the interrupt latch, provided the condition
that caused the alert no longer exists.
OVERT
Overtemperature Alarm/Warning
Outputs
OVERT asserts when the temperature rises to a value
stored in one of the OVERT limit registers (19h, 20h). It
deasserts when the temperature drops below the
stored limit, minus hysteresis. OVERT can be used to
activate a cooling fan, send a warning, invoke clock
throttling, or trigger a system shutdown to prevent com-
ponent damage.
Command Byte Functions
The 8-bit command byte register (Table 5) is the master
index that points to the various other registers within the
MAX6648/MAX6692. The register’s POR state is 0000
0000, so a receive byte transmission (a protocol that
lacks the command byte) that occurs immediately after
POR, returns the current local temperature data.
The MAX6648/MAX6692 incorporate collision avoid-
ance so that completely asynchronous operation is
allowed between SMBus operations and temperature
conversions.
One-Shot
The one-shot command immediately forces a new con-
version cycle to begin. If the one-shot command is
received while the MAX6648/MAX6692 are in standby
mode (RUN bit = 1), a new conversion begins, after
which the device returns to standby mode. If a one-shot
conversion is in progress when a one-shot command is
received, the command is ignored. If a one-shot com-
mand is received in autonomous mode (RUN bit = 0)
between conversions, a new conversion begins, the
conversion rate timer is reset, and the next automatic
conversion takes place after a full delay elapses.
Configuration Byte Functions
The configuration byte register (Table 6) is a read-write
register with several functions. Bit 7 is used to mask (dis-
able) interrupts. Bit 6 puts the MAX6648/MAX6692 into
standby mode (STOP) or autonomous (RUN) mode.
Status Byte Functions
The status byte register (Table 7) indicates which (if
any) temperature thresholds have been exceeded. This
byte also indicates whether the ADC is converting and
whether there is an open-circuit fault detected in the
external sense junction. After POR, the normal state of
all flag bits is zero, assuming no alarm conditions are
present. The status byte is cleared by any successful
read of the status byte, after a conversion is complete
and the fault no longer exists. Note that the ALERT
interrupt latch is not automatically cleared when the
status flag bit indicating the ALERT is cleared. The fault
condition must be eliminated before the ALERT output
can be cleared.
When autoconverting, if the T
HIGH
and T
LOW
limits are
close together, it is possible for both high-temp and
low-temp status bits to be set, depending on the
amount of time between status read operations (espe-
cially when converting at the fastest rate). In these cir-
cumstances, it is best not to rely on the status bits to
indicate reversals in long-term temperature changes.
Instead use a current temperature reading to establish
the trend direction.
Conversion Rate Byte
The conversion rate register (Table 8) programs the
time interval between conversions in free-running
autonomous mode (RUN = 0). This variable rate control
can be used to reduce the supply current in portable-
equipment applications. The conversion rate byte’s
POR state is 07h or 4Hz. The MAX6648/MAX6692 look
BIT NAME
POR
STATE
FUNCTION
7 RFU 1
Reserved. Always write 1 to
this bit.
6 to 3 RFU 0
Reserved. Always write
zero to this bit.
2 FQ1 0
Fault queue-length control
bit (see Table 4).
1 FQ0 0
Fault queue-length control
bit (see Table 4).
0 RFU 0
Reserved. Always write
zero to this bit.
Table 3. Fault Queue Register Bit Definition
(22h)
FQ1 FQ0 FAULT QUEUE LENGTH (SAMPLES)
00 1
01 2
11 3
10
Table 4. Fault Queue Length Bit Definition

MAX6692YMUA+T

Mfr. #:
Manufacturer:
Maxim Integrated
Description:
Board Mount Temperature Sensors Remote/Local Temperature Sensor
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union